A pH-Responsive Cluster Metal-Organic Framework Nanoparticle for Enhanced Tumor Accumulation and Antitumor Effect




Cheng Ruoyu, Jiang Lingxi, Gao Han, Liu Zehua, Mäkilä Ermei, Wang Shiqi, Saiding Qimanguli, Xiang Lei, Tang Xiaomei, Shi Minmin, Liu Jia, Pang Libin, Salonen Jarno, Hirvonen Jouni, Zhang Hongbo, Cui Wenguo, Shen Baiyong, Santos Hélder A.

PublisherWILEY-V C H VERLAG GMBH

2022

Advanced Materials

ADVANCED MATERIALS

ADV MATER

2203915

13

0935-9648

1521-4095

DOIhttps://doi.org/10.1002/adma.202203915

https://onlinelibrary.wiley.com/doi/10.1002/adma.202203915

https://research.utu.fi/converis/portal/detail/Publication/176473953



As a result of the deficient tumor-specific antigens, potential off-target effect, and influence of protein corona, metal–organic framework nanoparticles have inadequate accumulation in tumor tissues, limiting their therapeutic effects. In this work, a pH-responsive linker (L) is prepared by covalently modifying oleylamine (OA) with 3-(bromomethyl)-4-methyl-2,5-furandione (MMfu) and poly(ethylene glycol) (PEG). Then, the L is embedded into a solid lipid nanoshell to coat apilimod (Ap)-loaded zeolitic imidazolate framework (Ap-ZIF) to form Ap-ZIF@SLN#L. Under the tumor microenvironment, the hydrophilic PEG and MMfu are removed, exposing the hydrophobic OA on Ap-ZIF@SLN#L, increasing their uptake in cancer cells and accumulation in the tumor. The ZIF@SLN#L nanoparticle induces reactive oxygen species (ROS). Ap released from Ap-ZIF@SLN#L significantly promotes intracellular ROS and lactate dehydrogenase generation. Ap-ZIF@SLN#L inhibits tumor growth, increases the survival rate in mice, activates the tumor microenvironment, and improves the infiltration of macrophages and T cells in the tumor, as demonstrated in two different tumor-bearing mice after injections with Ap-ZIF@SLN#TL. Furthermore, mice show normal tissue structure of the main organs and the normal serum level in alanine aminotransferase and aspartate aminotransferase after treatment with the nanoparticles. Overall, this pH-responsive targeting strategy improves nanoparticle accumulation in tumors with enhanced therapeutic effects.


Last updated on 2024-26-11 at 20:09