A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Estimates for the hyperbolic metric of the punctured plane and applications
Tekijät: Solynin A., Vuorinen M.
Julkaisuvuosi: 2001
Journal: Israel Journal of Mathematics
Tietokannassa oleva lehden nimi: Israel Journal of Mathematics
Vuosikerta: 124
Numero: null
Aloitussivu: 29
Lopetussivu: 60
Sivujen määrä: 32
ISSN: 0021-2172
Verkko-osoite: http://api.elsevier.com/content/abstract/scopus_id:0035649468
Tiivistelmä
The hyperbolic metric h of the twice punctured complex plane Ω is studied. A new recursive algorithm for computing the density λ of h is given. For a proper subdomain G of Ω we answer a question of G. Martin concerning quasiconformal mappings of G that can be extended to the complement of G as the identity map.
The hyperbolic metric h of the twice punctured complex plane Ω is studied. A new recursive algorithm for computing the density λ of h is given. For a proper subdomain G of Ω we answer a question of G. Martin concerning quasiconformal mappings of G that can be extended to the complement of G as the identity map.