A1 Refereed original research article in a scientific journal

A user preference analysis of commercial breath ketone sensors to inform the development of portable breath ketone sensors for diabetes management in young people




AuthorsBrew-Sam Nicola, Desborough Jane, Parkinson Anne, Murugappan Krishnan, Daskalaki Eleni, Brown Ellen, Ebbeck Harry, Pedley Lachlan, Hannon Kristal, Brown Karen, Pedley Elizabeth, Ebbeck Genevieve, Tricoli Antonio, Suominen Hanna, Nolan Christopher J, Phillips Christine

PublisherPublic Library of Science

Publication year2022

JournalPLoS ONE

Journal name in sourcePloS one

Journal acronymPLoS One

Article numbere0269925

Volume17

Issue7

ISSN1932-6203

eISSN1932-6203

DOIhttps://doi.org/10.1371/journal.pone.0269925

Web address https://doi.org/10.1371/journal.pone.0269925

Self-archived copy’s web addresshttps://research.utu.fi/converis/portal/detail/Publication/176284705


Abstract

BACKGROUND

Portable breath ketone sensors may help people with Type 1 Diabetes Mellitus (T1DM) avoid episodes of diabetic ketoacidosis; however, the design features preferred by users have not been studied. We aimed to elucidate breath sensor design preferences of young people with T1DM (age 12 to 16) and their parents to inform the development of a breath ketone sensor prototype that would best suit their diabetes management needs.

RESEARCH DESIGNS AND METHODS

To elicit foundational experiences from which design preference ideas could be generated, two commercially available breath ketone sensors, designed for ketogenic diet monitoring, were explored over one week by ten young people with T1DM. Participants interacted with the breath ketone sensing devices, and undertook blood ketone testing, at least twice daily for five days to simulate use within a real life and ambulatory care setting. Semi-structured interviews were conducted post-testing with the ten young participants and their caregivers (n = 10) to elicit preferences related to breath sensor design and use, and to inform the co-design of a breath ketone sensor prototype for use in T1DM self-management. We triangulated our data collection with key informant interviews with two diabetes educators working in pediatric care about their perspectives related to young people using breath ketone sensors.

RESULTS

Participants acknowledged the non-invasiveness of breath sensors as compared to blood testing. Affordability, reliability and accuracy were identified as prerequisites for breath ketone sensors used for diabetes management. Design features valued by young people included portability, ease of use, sustainability, readability and suitability for use in public. The time required to use breath sensors was similar to that for blood testing. The requirement to maintain a 10-second breath exhalation posed a challenge for users. Diabetes educators highlighted the ease of use of breath devices especially for young people who tended to under-test using blood ketone strips.

CONCLUSIONS

Breath ketone sensors for diabetes management have potential that may facilitate ketone testing in young people. Our study affirms features for young people that drive usability of breath sensors among this population, and provides a model of user preference assessment.


Downloadable publication

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 14:58