O2 Muu julkaisu

The Use of Event-Related Potentials and Machine Learning to Improve Diagnostic Testing and Prediction of Disease Progression in Parkinson's Disease




TekijätVlieger Robin, Daskalaki Elena, Apthorp Deborah, Lueck Christian J, Suominen Hanna

ToimittajaMichelle Honey, Charlene Ronquillo, Ting-Ting Lee, Lucy Westbrooke

Konferenssin vakiintunut nimiInternational Congress in Nursing Informatics

Julkaisuvuosi2021

JournalStudies in Health Technology and Informatics

Kokoomateoksen nimiNurses and Midwives in the Digital Age: Selected Papers, Posters and Panels from the 15th International Congress in Nursing Informatics

Tietokannassa oleva lehden nimiStudies in health technology and informatics

Lehden akronyymiStud Health Technol Inform

Sarjan nimiStudies in Health Technology and Informatics

Vuosikerta284

Aloitussivu333

Lopetussivu335

ISSN0926-9630

eISSN1879-8365

DOIhttps://doi.org/10.3233/SHTI210737

Verkko-osoitehttps://ebooks.iospress.nl/doi/10.3233/SHTI210737

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/176265723


Tiivistelmä
Current tests of disease status in Parkinson's disease suffer from high variability, limiting their ability to determine disease severity and prognosis. Event-related potentials, in conjunction with machine learning, may provide a more objective assessment. In this study, we will use event-related potentials to develop machine learning models, aiming to provide an objective way to assess disease status and predict disease progression in Parkinson's disease.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 14:00