Vertaisarvioitu alkuperäisartikkeli tai data-artikkeli tieteellisessä aikakauslehdessä (A1)
Regularity Theory for Non-autonomous Partial Differential Equations Without Uhlenbeck Structure
Julkaisun tekijät: Hästö Peter, Ok Jihoon
Kustantaja: SPRINGER
Julkaisuvuosi: 2022
Journal: Archive for Rational Mechanics and Analysis
Tietokannassa oleva lehden nimi: ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
Lehden akronyymi: ARCH RATION MECH AN
Volyymi: 245
Julkaisunumero: 3
Aloitussivu: 1401
Lopetussivun numero: 1436
Sivujen määrä: 36
ISSN: 0003-9527
eISSN: 1432-0673
DOI: http://dx.doi.org/10.1007/s00205-022-01807-y
Verkko-osoite: https://doi.org/10.1007/s00205-022-01807-y
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/176122661
We establish maximal local regularity results of weak solutions or local minimizers of div A(x, Du) = 0 and min(u) integral(Omega) F(x, Du)dx,providing new ellipticity and continuity assumptions on A or F with general (p, q)-growth. Optimal regularity theory for the above non-autonomous problems is a long-standing issue; the classical approach by Giaquinta and Giusti involves assuming that the nonlinearity F satisfies a structure condition. This means that the growth and ellipticity conditions depend on a given special function, such as t(p), phi (t), t(p(x)), t(p) +a(x)t(q), and not only F but also the given function is assumed to satisfy suitable continuity conditions. Hence these regularity conditions depend on given special functions. In this paper we study the problem without recourse to, special function structure and without assuming Uhlenbeck structure. We introduce a new ellipticity condition using A or F only, which entails that the function is quasi-isotropic, i.e. it may depend on the direction, but only up to a multiplicative constant. Moreover, we formulate the continuity condition on A or F without specific structure and without direct restriction on the ratio q/p of the parameters from the (p, q)-growth condition. We establish local C-1,C-alpha-regularity for some alpha is an element of (0, 1) and C-alpha-regularity for any alpha is an element of (0, 1) of weak solutions and local minimizers. Previously known, essentially optimal, regularity results are included as special cases.
Ladattava julkaisu This is an electronic reprint of the original article. |