A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

The Hardy-Littlewood-Chowla conjecture in the presence of a Siegel zero




TekijätTao Terence, Teräväinen Joni

KustantajaWILEY

Julkaisuvuosi2022

JournalJournal of the London Mathematical Society

Tietokannassa oleva lehden nimiJOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES

Lehden akronyymiJ LOND MATH SOC

Sivujen määrä62

ISSN0024-6107

eISSN1469-7750

DOIhttps://doi.org/10.1112/jlms.12663

Verkko-osoitehttps://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.12663

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/176032641


Tiivistelmä
Assuming that Siegel zeros exist, we prove a hybrid version of the Chowla and Hardy-Littlewood prime tuples conjectures. Thus, for an infinite sequence of natural numbers.., and any distinct integers h(1), ... , h(k), h'(1), ... , h'(l), we establish an asymptotic formula forSigma(n <= x) Lambda(n + h(1)) ... Lambda(n + h(k))lambda(n + h'(1)) ... lambda(n + h'(l))for any 0 <= k <= 2 and l >= 0. Specializing to either l = 0 or.. = 0, we deduce the previously known results on the Hardy-Littlewood (or twin primes) conjecture and the Chowla conjecture under the existence of Siegel zeros, due to Heath-Brown and Chinis, respectively. The range of validity of our asymptotic formula is wider than in these previous results.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 20:19