A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Machine learning in interpretation of electronic core-level spectra




TekijätNiskanen Johannes, Vladyka Anton, Kettunen J. Antti, Sahle Christoph

KustantajaElsevier

Julkaisuvuosi2022

JournalJournal of Electron Spectroscopy and Related Phenomena

Lehden akronyymiJournal of Electron Spectroscopy and Related Phenomena

Artikkelin numero147243

Vuosikerta260

Numero147243

eISSN1873-2526

DOIhttps://doi.org/10.1016/j.elspec.2022.147243

Verkko-osoitehttps://doi.org/10.1016/j.elspec.2022.147243

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/176024642

Preprintin osoitehttps://arxiv.org/abs/2104.02374v1


Tiivistelmä

Electronic transitions involving core-level orbitals offer a localized, atomic-site and element specific peek window into statistical systems such as molecular liquids. Although formally understood, the complex relation between structure and spectrum -- and the effect of statistical averaging of highly differing spectra of individual structures -- render the analysis of an ensemble-averaged core-level spectrum complicated. We explore the applicability of machine learning for molecular structure -- core-level spectrum interpretation. We focus on the electronic Hamiltonian using the \ce{H2O} molecule in the classical-nuclei approximation as our test system. For a systematic view we studied both predicting structures from spectra and, vice versa, spectra from structures, using polynomial approaches and neural networks. We find predicting spectra easier than predicting structures, where a tighter grid (even unphysical) of the spectrum improves prediction, possibly inviting for over-interpretation of the model. The accuracy of the structure prediction worsens when moving outwards from the center of mass of the training set in the structural parameter space, which can not be overcome by model selection based on generalizability.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 22:54