A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Molecular Conformer Search with Low-Energy Latent Space




TekijätGuo Xiaomi, Fang Lincan, Xu Yong, Duan Wenhui, Rinke Patrick, Todorović Milica, Chen Xi

KustantajaAMER CHEMICAL SOC

Julkaisuvuosi2022

JournalJournal of Chemical Theory and Computation

Tietokannassa oleva lehden nimiJOURNAL OF CHEMICAL THEORY AND COMPUTATION

Lehden akronyymiJ CHEM THEORY COMPUT

Vuosikerta18

Numero7

Aloitussivu4574

Lopetussivu4585

Sivujen määrä12

ISSN1549-9618

DOIhttps://doi.org/10.1021/acs.jctc.2c00290

Verkko-osoitehttps://doi.org/10.1021/acs.jctc.2c00290

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/176010810


Tiivistelmä
Identifying low-energy conformers with quantum mechanical accuracy for molecules with many degrees of freedom is challenging. In this work, we use the molecular dihedral angles as features and explore the possibility of performing molecular conformer search in a latent space with a generative model named variational auto-encoder (VAE). We bias the VAE towards low-energy molecular configurations to generate more informative data. In this way, we can effectively build a reliable energy model for the low-energy potential energy surface. After the energy model has been built, we extract local-minimum conformations and refine them with structure optimization. We have tested and benchmarked our low-energy latent-space (LOLS) structure search method on organic molecules with 5-9 searching dimensions. Our results agree with previous studies.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 23:53