A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

TrackMate 7: integrating state-of-the-art segmentation algorithms into tracking pipelines




TekijätErshov Dmitry, Phan Minh-Son, Pylvänäinen Joanna W., Rigaud Stephane U., Le Blanc Laure, Charles-Orszag Arthur, Conway James R.W., Laine Romain F., Roy Nathan H., Bonazzi Daria, Dumenil Guillaume, Jacquemet Guillaume, Tinevez Jean-Yves

KustantajaNature

Julkaisuvuosi2022

JournalNature Methods

Tietokannassa oleva lehden nimiNATURE METHODS

Lehden akronyymiNAT METHODS

Vuosikerta19

Aloitussivu829

Lopetussivu832

Sivujen määrä12

ISSN1548-7091

eISSN1548-7105

DOIhttps://doi.org/10.1038/s41592-022-01507-1

Verkko-osoitehttps://www.nature.com/articles/s41592-022-01507-1

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/175931238


Tiivistelmä
TrackMate is an automated tracking software used to analyze bioimages and is distributed as a Fiji plugin. Here, we introduce a new version of TrackMate. TrackMate 7 is built to address the broad spectrum of modern challenges researchers face by integrating state-of-the-art segmentation algorithms into tracking pipelines. We illustrate qualitatively and quantitatively that these new capabilities function effectively across a wide range of bio-imaging experiments.TrackMate 7 combines the benefits of machine and deep learning-based image segmentation with accurate object tracking to enable improved 2D and 3D tracking of diverse objects in biological research.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 20:28