A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Post-acute blood biomarkers and disease progression in traumatic brain injury




TekijätNewcombe Virginia FJ, Ashton Nicholas J, Posti Jussi P, Glocker Ben, Manktelow Anne, Chatfield Doris A, Winzeck Stefan, Needham Edward, Correia Marta M, Williams Guy B, Simrén Joel, Takala Riikka SK, Katila Ari J, Maanpää Henna Riikka, Tallus Jussi, Frantzén Janek, Blennow Kaj, Tenovuo Olli, Zetterberg Henrik, Menon David K

KustantajaOxford Univ Press

Julkaisuvuosi2022

JournalBrain

Tietokannassa oleva lehden nimiBRAIN

Lehden akronyymiBRAIN

Vuosikerta145

Numero6

Aloitussivu2064

Lopetussivu2076

Sivujen määrä13

ISSN0006-8950

eISSN1460-2156

DOIhttps://doi.org/10.1093/brain/awac126

Verkko-osoitehttps://academic.oup.com/brain/article/145/6/2064/6563212?login=true

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/175845346


Tiivistelmä

There is substantial interest in the potential for traumatic brain injury to result in progressive neurological deterioration. While blood biomarkers such as glial fibrillary acid protein (GFAP) and neurofilament light have been widely explored in characterizing acute traumatic brain injury (TBI), their use in the chronic phase is limited. Given increasing evidence that these proteins may be markers of ongoing neurodegeneration in a range of diseases, we examined their relationship to imaging changes and functional outcome in the months to years following TBI.

Two-hundred and three patients were recruited in two separate cohorts; 6 months post-injury (n = 165); and >5 years post-injury (n = 38; 12 of whom also provided data ∼8 months post-TBI). Subjects underwent blood biomarker sampling (n = 199) and MRI (n = 172; including diffusion tensor imaging). Data from patient cohorts were compared to 59 healthy volunteers and 21 non-brain injury trauma controls. Mean diffusivity and fractional anisotropy were calculated in cortical grey matter, deep grey matter and whole brain white matter. Accelerated brain ageing was calculated at a whole brain level as the predicted age difference defined using T1-weighted images, and at a voxel-based level as the annualized Jacobian determinants in white matter and grey matter, referenced to a population of 652 healthy control subjects.

Serum neurofilament light concentrations were elevated in the early chronic phase. While GFAP values were within the normal range at ∼8 months, many patients showed a secondary and temporally distinct elevations up to >5 years after injury. Biomarker elevation at 6 months was significantly related to metrics of microstructural injury on diffusion tensor imaging. Biomarker levels at ∼8 months predicted white matter volume loss at >5 years, and annualized brain volume loss between ∼8 months and 5 years. Patients who worsened functionally between ∼8 months and >5 years showed higher than predicted brain age and elevated neurofilament light levels.

GFAP and neurofilament light levels can remain elevated months to years after TBI, and show distinct temporal profiles. These elevations correlate closely with microstructural injury in both grey and white matter on contemporaneous quantitative diffusion tensor imaging. Neurofilament light elevations at ∼8 months may predict ongoing white matter and brain volume loss over >5 years of follow-up. If confirmed, these findings suggest that blood biomarker levels at late time points could be used to identify TBI survivors who are at high risk of progressive neurological damage.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 14:24