A1 Refereed original research article in a scientific journal

Conformally invariant complete metrics




AuthorsSugawa Toshiyuki, Vuorinen Matti, Zhang Tanran

PublisherCAMBRIDGE UNIV PRESS

Publication year2023

JournalMathematical Proceedings of the Cambridge Philosophical Society

Journal name in sourceMATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY

Journal acronymMATH PROC CAMBRIDGE

Number of pages28

ISSN0305-0041

eISSN1469-8064

DOIhttps://doi.org/10.1017/S030500412200024X

Web address https://doi.org/10.1017/S030500412200024X

Self-archived copy’s web addresshttps://research.utu.fi/converis/portal/detail/Publication/175747871

Preprint addresshttps://arxiv.org/abs/2009.06465v1


Abstract

For a domain G in the one-point compactification ¯Rn=Rn∪{∞} of Rn,n⩾2 , we characterise the completeness of the modulus metric μG in terms of a potential-theoretic thickness condition of ∂G, Martio’s M-condition [35]. Next, we prove that ∂G is uniformly perfect if and only if μG admits a minorant in terms of a Möbius invariant metric. Several applications to quasiconformal maps are given.


Downloadable publication

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 23:41