A2 Vertaisarvioitu katsausartikkeli tieteellisessä lehdessä

Machine Learning Approach for Preterm Birth Prediction Using Health Records: Systematic Review




TekijätSharifi-Heris Zahra, Laitala Juho, Airola Antti, Rahmani Amir M., Bender Miriam

KustantajaJMIR Publications Inc.

Julkaisuvuosi2022

JournalJMIR Medical Informatics

Tietokannassa oleva lehden nimiJMIR Medical Informatics

Artikkelin numeroe33875

Vuosikerta10

Numero4

ISSN2291-9694

eISSN2291-9694

DOIhttps://doi.org/10.2196/33875

Verkko-osoitehttps://medinform.jmir.org/2022/4/e33875/

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/175679135

Preprintin osoite https://preprints.jmir.org/preprint/33875


Tiivistelmä

Background: Preterm birth (PTB), a common pregnancy complication, is responsible for 35% of the 3.1 million pregnancy-related deaths each year and significantly affects around 15 million children annually worldwide. Conventional approaches to predict PTB lack reliable predictive power, leaving >50% of cases undetected. Recently, machine learning (ML) models have shown potential as an appropriate complementary approach for PTB prediction using health records (HRs).

Objective: This study aimed to systematically review the literature concerned with PTB prediction using HR data and the ML approach.

Methods: This systematic review was conducted in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement. A comprehensive search was performed in 7 bibliographic databases until May 15, 2021. The quality of the studies was assessed, and descriptive information, including descriptive characteristics of the data, ML modeling processes, and model performance, was extracted and reported.

Results: A total of 732 papers were screened through title and abstract. Of these 732 studies, 23 (3.1%) were screened by full text, resulting in 13 (1.8%) papers that met the inclusion criteria. The sample size varied from a minimum value of 274 to a maximum of 1,400,000. The time length for which data were extracted varied from 1 to 11 years, and the oldest and newest data were related to 1988 and 2018, respectively. Population, data set, and ML models’ characteristics were assessed, and the performance of the model was often reported based on metrics such as accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve.

Conclusions: Various ML models used for different HR data indicated potential for PTB prediction. However, evaluation metrics, software and package used, data size and type, selected features, and importantly data management method often remain unjustified, threatening the reliability, performance, and internal or external validity of the model. To understand the usefulness of ML in covering the existing gap, future studies are also suggested to compare it with a conventional method on the same data set.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 20:01