A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Avoiding square-free words on free groups
Tekijät: Badkobeh Golnaz, Harju Tero, Ochem Pascal, Rosenfeld Matthieu
Kustantaja: Elsevier B.V.
Julkaisuvuosi: 2022
Journal: Theoretical Computer Science
Tietokannassa oleva lehden nimi: Theoretical Computer Science
Vuosikerta: 922
Aloitussivu: 206
Lopetussivu: 217
ISSN: 0304-3975
eISSN: 1879-2294
DOI: https://doi.org/10.1016/j.tcs.2022.04.025
Verkko-osoite: https://doi.org/10.1016/j.tcs.2022.04.025
Preprintin osoite: http://arxiv.org/pdf/2104.06837
We consider sets of factors that can be avoided in square-free words on two-generator free groups. The elements of the group are presented in terms of {0,1,2,3} such that 0 and 2 (resp., 1 and 3) are inverses of each other so that 02, 20, 13 and 31 do not occur in a reduced word. A Dean word is a reduced word that does not contain occurrences of uu for any nonempty u. Dean showed in 1965 that there exist infinite square-free reduced words. We show that if w is a Dean word of length at least 59 then there are at most six reduced words of length 3 avoided by w. We construct an infinite Dean word avoiding six reduced words of length 3. We also construct infinite Dean words with low critical exponent and avoiding fewer reduced words of length 3. Finally, we show that the minimal frequency of a letter in a Dean word is [Formula presented] and the growth rate is close to 1.45818. © 2022 Elsevier B.V.
Author keywordsCombinatorics on words; Square-free words