A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Intrinsic metrics in ring domains




TekijätRainio Oona

KustantajaSpringer International Publishing

Julkaisuvuosi2022

JournalComplex Analysis and its Synergies

Tietokannassa oleva lehden nimiComplex Analysis and its Synergies

Artikkelin numero3

Vuosikerta8

Numero1

eISSN2197-120X

DOIhttps://doi.org/10.1007/s40627-022-00092-5

Verkko-osoitehttps://doi.org/10.1007/s40627-022-00092-5

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/175495372


Tiivistelmä

Three hyperbolic-type metrics including the triangular ratio metric, the j*-metric, and the Möbius metric are studied in an annular ring. The Euclidean midpoint rotation is introduced as a method to create upper and lower bounds for these metrics, and their sharp inequalities are found. A new Möbius-invariant lower bound is proved for the conformal capacity of a general ring domain by using a symmetric quantity defined with the Möbius metric.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 19:59