A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Machine learning sparse tight-binding parameters for defects




TekijätSchattauer Christoph, Todorović Milica, Ghosh Kunal, Rinke Patrick, Libisch Florian

KustantajaSpringer nature

Julkaisuvuosi2022

Journalnpj Computational Materials

Tietokannassa oleva lehden nimiNPJ COMPUTATIONAL MATERIALS

Lehden akronyymiNPJ COMPUT MATER

Artikkelin numero 116

Vuosikerta8

Numero1

Sivujen määrä11

DOIhttps://doi.org/10.1038/s41524-022-00791-x

Verkko-osoitehttps://doi.org/10.1038/s41524-022-00791-x

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/75466335


Tiivistelmä
We employ machine learning to derive tight-binding parametrizations for the electronic structure of defects. We test several machine learning methods that map the atomic and electronic structure of a defect onto a sparse tight-binding parameterization. Since Multi-layer perceptrons (i.e., feed-forward neural networks) perform best we adopt them for our further investigations. We demonstrate the accuracy of our parameterizations for a range of important electronic structure properties such as band structure, local density of states, transport and level spacing simulations for two common defects in single layer graphene. Our machine learning approach achieves results comparable to maximally localized Wannier functions (i.e., DFT accuracy) without prior knowledge about the electronic structure of the defects while also allowing for a reduced interaction range which substantially reduces calculation time. It is general and can be applied to a wide range of other materials, enabling accurate large-scale simulations of material properties in the presence of different defects.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 18:27