A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

Reinforcement Learning of Depth Stabilization with a Micro Diving Agent




TekijätBrinkmann Gerrit, Bessa Wallace M., Duecker Daniel A., Kreuzer Edwin, Solowjow Eugen

ToimittajaKevin Lynch

Konferenssin vakiintunut nimiIEEE International Conference on Robotics and Automation

Julkaisuvuosi2018

JournalIEEE International Conference on Robotics and Automation

Kokoomateoksen nimiProceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA)

Sarjan nimiIEEE International Conference on Robotics and Automation

Aloitussivu6197

Lopetussivu6203

ISBN978-1-5386-3082-2

eISBN978-1-5386-3081-5

ISSN2152-4092

DOIhttps://doi.org/10.1109/ICRA.2018.8461137

Verkko-osoitehttps://ieeexplore.ieee.org/document/8461137


Tiivistelmä

Reinforcement learning (RL) allows robots to solve control tasks through interaction with their environment. In this paper we study a model-based value-function RL approach, which is suitable for computationally limited robots and light embedded systems. We develop a diving agent, which uses the RL algorithm for underwater depth stabilization. Simulations and experiments with the micro diving agent demonstrate its ability to learn the depth stabilization task.



Last updated on 2024-26-11 at 18:24