A4 Vertaisarvioitu artikkeli konferenssijulkaisussa
Intelligent Depth Control of Underwater Robots using Artificial Neural Networks and Reinforcement Learning
Tekijät: Cadengue Lucas S., Lima Gabriel S., Bessa Wallace M.
Toimittaja: Luiz Marcos Garcia Gonçalves, Paulo Lilles Jorge Drews Junior, Bruno Marques Ferreira da Silva, Davi Henrique dos Santos, Julio César Paulino de Melo
Konferenssin vakiintunut nimi: IEEE Latin American Robotics Symposium
Julkaisuvuosi: 2020
Journal: Latin American Robotics Symposium
Kokoomateoksen nimi: Proceedings of the 2020 Latin American Robotics Symposium (LARS)
Sarjan nimi: Latin American Robotics Symposium
ISBN: 978-1-6654-1985-7
ISSN: 2639-1775
eISSN: 2643-685X
DOI: https://doi.org/10.1109/LARS/SBR/WRE51543.2020.9306984
Verkko-osoite: https://ieeexplore.ieee.org/document/9306984
Underwater robots, such as ROVs (Remotely Operated underwater Vehicles), are widely employed in both inspection and maintenance of offshore structures, in order to avoid the life risks associated with these operations at great depths. However, in view of the high levels of uncertainty that are inherent to the underwater environment, conventional control approaches usually can not provide the required performance to allow precise maneuvers with underwater robots. In this paper, an intelligent controller is proposed for the accurate depth control of a ROV. An artificial neural network is embedded in the control law to compensate for external disturbances and unmodeled dynamics. In addition, a reinforcement learning scheme, namely the Upper Confidence Bound algorithm, is used to tune some of the network parameters. The boundedness and convergence properties of the closed-loop signals are analytically proven. Numerical results confirm the improved performance of the proposed control approach.