A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

Context Aware Monitoring for Smart Grids




TekijätHauer Daniel, Götzinger Maximilian, Jantsch Axel, Kintzler Florian

ToimittajaN/A

Konferenssin vakiintunut nimiIEEE International Symposium on Industrial Electronics

Julkaisuvuosi2021

JournalProceedings of the IEEE International Symposium on Industrial Electronics

Kokoomateoksen nimi2021 IEEE 30th International Symposium on Industrial Electronics (ISIE)

Tietokannassa oleva lehden nimiPROCEEDINGS OF 2021 IEEE 30TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE)

Lehden akronyymiPROC IEEE INT SYMP

Sarjan nimiProceedings of the IEEE International Symposium on Industrial Electronics

Sivujen määrä6

ISBN978-1-7281-9024-2

eISBN978-1-7281-9023-5

ISSN2163-5137

eISSN2163-5145

DOIhttps://doi.org/10.1109/ISIE45552.2021.9576488

Verkko-osoitehttps://ieeexplore.ieee.org/document/9576488


Tiivistelmä
Today's energy grids face an increasing number of decentralized and renewable energy sources as well as growing e-mobility. Therefore, reliable grid monitoring becomes a key element for a sustainable grid operation. Traditional grid monitoring concepts are either fully manual, need a detailed system model, or rely on computationally heavy machine learning concepts. However, with the given complexity of the energy grid, a model-free and context-aware monitoring approach can save resources and efforts. Recently, we introduced the Confidence-based Context-Aware Condition Monitoring (CCAM) system and successfully tested it on two different industrial use-cases: a hydraulic circuit and an AC motor. In this paper, we enhance CCAM for a third, entirely different industrial use case, an energy grid, by introducing two extensions - a continuous reevaluation and a state mooring approach. Furthermore, we present a new Smart Grid monitoring methodology on top of CCAM, paving the way for new real-time grid control systems. We evaluate our approach based on historical load data from a low voltage grid section. Our results show that characteristics of a daily load profile can be learned and outliers can be detected.



Last updated on 2024-26-11 at 17:46