A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Singmaster’s Conjecture In The Interior Of Pascal’s Triangle




TekijätMatomäki Kaisa, Radziwiłł Maksym, Shao Xuancheng, Tao Terence, Teräväinen Joni

KustantajaOXFORD UNIV PRESS

Julkaisuvuosi2022

JournalQuarterly Journal of Mathematics

Tietokannassa oleva lehden nimiQUARTERLY JOURNAL OF MATHEMATICS

Lehden akronyymiQ J MATH

Artikkelin numerohaac006

Sivujen määrä41

ISSN0033-5606

eISSN1464-3847

DOIhttps://doi.org/10.1093/qmath/haac006

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/175192355


Tiivistelmä
Singmaster's conjecture asserts that every natural number greater than one occurs at most a bounded number of times in Pascal's triangle; that is, for any natural number t >= 2, the number of solutions to the equation ((n)(m)) = t for natural numbers 1 <= m < n is bounded. In this paper we establish this result in the interior region exp(log(2/3+epsilon) n) <= m <= n - exp(log(2/3+epsilon) n) for any fixed epsilon > 0. Indeed, when t is sufficiently large depending on epsilon, we show that there are at most four solutions (or at most two in either half of Pascal's triangle) in this region. We also establish analogous results for the equation (n)(m) = t, where (n)(m) := n(n - 1) . . . (n - m + 1) denotes the falling factorial.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 12:24