A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Statistical and machine learning methods to study human CD4+ T cell proteome profiles




TekijätSuomi Tomi, Elo Laura L

KustantajaElsevier

Julkaisuvuosi2022

JournalImmunology Letters

Tietokannassa oleva lehden nimiImmunology letters

Lehden akronyymiImmunol Lett

Vuosikerta245

Aloitussivu8

Lopetussivu17

ISSN0165-2478

eISSN1879-0542

DOIhttps://doi.org/10.1016/j.imlet.2022.03.006

Verkko-osoitehttps://doi.org/10.1016/j.imlet.2022.03.006

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/175189283


Tiivistelmä
Mass spectrometry proteomics has become an important part of modern immunology, making major contributions to understanding protein expression levels, subcellular localizations, posttranslational modifications, and interactions in various immune cell populations. New developments in both experimental and computational techniques offer increasing opportunities for exploring the immune system and the molecular mechanisms involved in immune responses. Here, we focus on current computational approaches to infer relevant information from large mass spectrometry based protein profiling datasets, covering the different steps of the analysis from protein identification and quantification to further mining and modelling of the protein abundance data. Additionally, we provide a summary of the key proteome profiling studies on human CD4+ T cells and their different subtypes in health and disease.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 20:52