O2 Muu julkaisu

A Riemann Hypothesis Analog for the Krawtchouk and Discrete Chebyshev Polynomials




TekijätGogin Nikita, Hirvensalo Mika

KustantajaSpringer

Julkaisuvuosi2022

JournalJournal of Mathematical Sciences

Tietokannassa oleva lehden nimiJournal of Mathematical Sciences (United States)

Vuosikerta261

Aloitussivu709

Lopetussivu716

DOIhttps://doi.org/10.1007/s10958-022-05782-3

Verkko-osoitehttps://link.springer.com/article/10.1007/s10958-022-05782-3#author-information


Tiivistelmä

As an analog to the Riemann hypothesis, we prove that the real parts of all complex zeros of the Krawtchouk polynomials, as well as of the discrete Chebyshev polynomials, of order N = −1 are equal to −1/2. For these polynomials, we also derive a functional equation analogous to that for the Riemann zeta function.



Last updated on 2024-26-11 at 20:52