O2 Muu julkaisu
A Riemann Hypothesis Analog for the Krawtchouk and Discrete Chebyshev Polynomials
Tekijät: Gogin Nikita, Hirvensalo Mika
Kustantaja: Springer
Julkaisuvuosi: 2022
Journal: Journal of Mathematical Sciences
Tietokannassa oleva lehden nimi: Journal of Mathematical Sciences (United States)
Vuosikerta: 261
Aloitussivu: 709
Lopetussivu: 716
DOI: https://doi.org/10.1007/s10958-022-05782-3
Verkko-osoite: https://link.springer.com/article/10.1007/s10958-022-05782-3#author-information
As an analog to the Riemann hypothesis, we prove that the real parts of all complex zeros of the Krawtchouk polynomials, as well as of the discrete Chebyshev polynomials, of order N = −1 are equal to −1/2. For these polynomials, we also derive a functional equation analogous to that for the Riemann zeta function.