A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Using Multivariate Imputation by Chained Equations to Predict Redshifts of Active Galactic Nuclei
Tekijät: Gibson Spencer James, Narendra Aditya, Dainotti Maria Giovanna, Bogdan Malgorzata, Pollo Agnieszka, Poliszczuk Artem, Rinaldi Enrico, Liodakis Ioannis
Kustantaja: FRONTIERS MEDIA SA
Julkaisuvuosi: 2022
Journal: Frontiers in Astronomy and Space Sciences
Tietokannassa oleva lehden nimi: FRONTIERS IN ASTRONOMY AND SPACE SCIENCES
Lehden akronyymi: FRONT ASTRON SPACE
Artikkelin numero: 836215
Vuosikerta: 9
Sivujen määrä: 16
ISSN: 2296-987X
DOI: https://doi.org/10.3389/fspas.2022.836215
Verkko-osoite: https://www.frontiersin.org/articles/10.3389/fspas.2022.836215/full
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/175075385
Redshift measurement of active galactic nuclei (AGNs) remains a time-consuming and challenging task, as it requires follow up spectroscopic observations and detailed analysis. Hence, there exists an urgent requirement for alternative redshift estimation techniques. The use of machine learning (ML) for this purpose has been growing over the last few years, primarily due to the availability of large-scale galactic surveys. However, due to observational errors, a significant fraction of these data sets often have missing entries, rendering that fraction unusable for ML regression applications. In this study, we demonstrate the performance of an imputation technique called Multivariate Imputation by Chained Equations (MICE), which rectifies the issue of missing data entries by imputing them using the available information in the catalog. We use the Fermi-LAT Fourth Data Release Catalog (4LAC) and impute 24% of the catalog. Subsequently, we follow the methodology described in Dainotti et al. (ApJ, 2021, 920, 118) and create an ML model for estimating the redshift of 4LAC AGNs. We present results which highlight positive impact of MICE imputation technique on the machine learning models performance and obtained redshift estimation accuracy.
Ladattava julkaisu This is an electronic reprint of the original article. |