A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Maximal regularity for local minimizers of non-autonomous functionals




TekijätHästö Peter, Ok Jihoon

KustantajaEUROPEAN MATHEMATICAL SOC-EMS

Julkaisuvuosi2022

JournalJournal of the European Mathematical Society

Tietokannassa oleva lehden nimiJOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY

Lehden akronyymiJ EUR MATH SOC

Vuosikerta24

Numero4

Aloitussivu1285

Lopetussivu1334

Sivujen määrä50

ISSN1435-9855

DOIhttps://doi.org/10.4171/JEMS/1118

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/175031943

Preprintin osoitehttps://arxiv.org/abs/1902.00261v1


Tiivistelmä
We establish local C-1;alpha-regularity for some alpha is an element of (0, 1) and C-alpha-regularity for any alpha is an element of (0, 1) of local minimizers of the functionalnu bar right arrow integral(Omega)phi(x, vertical bar D nu vertical bar)dx,where phi satisfies a(p, q)-growth condition. Establishing such a regularity theory with sharp, general conditions has been an open problem since the 1980s. In contrast to previous results, we formulate the continuity requirement on phi in terms of a single condition for the map(x, t) bar right arrow phi(x, t), rather than separately in the x- and t -directions. Thus we can obtain regularity results for functionals without assuming that the gap q=p between the upper and lower growth bounds is close to 1. Moreover, for phi(x, t) with particular structure, including p-, Orlicz-, p(x)- and double phasegrowth, our single condition implies known, essentially optimal, regularity conditions. Hence, we handle regularity theory for the above functional in a universal way.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 19:44