A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Almost primes in almost all very short intervals




TekijätMatomäki Kaisa

KustantajaWILEY

Julkaisuvuosi2022

JournalJournal of the London Mathematical Society

Tietokannassa oleva lehden nimiJOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES

Lehden akronyymiJ LOND MATH SOC

Sivujen määrä37

ISSN0024-6107

eISSN1469-7750

DOIhttps://doi.org/10.1112/jlms.12592

Verkko-osoitehttps://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/jlms.12592

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/175009419


Tiivistelmä
We show that as soon as h ->infinity$h\rightarrow \infty$ with X ->infinity$X \rightarrow \infty$, almost all intervals (x-hlogX,x]$(x-h\log X, x]$ with x is an element of(X/2,X]$x \in (X/2, X]$ contain a product of at most two primes. In the proof we use Richert's weighted sieve, with the arithmetic information eventually coming from results of Deshouillers and Iwaniec on averages of Kloosterman sums.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 16:17