A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

An Optimal Bound on the Solution Sets of One-Variable Word Equations and its Consequences




TekijätNowotka Dirk, Saarela Aleksi

KustantajaSIAM PUBLICATIONS

Julkaisuvuosi2022

JournalSIAM Journal on Computing

Tietokannassa oleva lehden nimiSIAM JOURNAL ON COMPUTING

Lehden akronyymiSIAM J COMPUT

Vuosikerta51

Numero1

Aloitussivu1

Lopetussivu18

Sivujen määrä18

ISSN0097-5397

DOIhttps://doi.org/10.1137/20M1310448

Verkko-osoitehttps://doi.org/10.1137/20M1310448

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/174890785


Tiivistelmä
We solve two long-standing open problems on word equations. Firstly, we prove that a one-variable word equation with constants has either at most three or an infinite number of solutions. The existence of such a bound had been conjectured, and the bound three is optimal. Secondly, we consider independent systems of three-variable word equations without constants. If such a system has a nonperiodic solution, then this system has at most 17 equations. Although probably not optimal, this is the first finite bound found. However, the conjecture of that bound being actually two still remains open.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 20:19