A1 Refereed original research article in a scientific journal

Serum Creatine, Not Neurofilament Light, Is Elevated in CHCHD10-Linked Spinal Muscular Atrophy




AuthorsJärvilehto Julius, Harjuhaahto Sandra, Palu Edourad, Auranen Mari, Kvist Jouni, Zetterberg Henrik, Koskivuori Johanna, Lehtonen Marko, Saukkonen Anna Maija, Jokela Manu, Ylikallio Emil, Tyynismaa Henna

PublisherFRONTIERS MEDIA SA

Publication year2022

JournalFrontiers in Neurology

Journal name in sourceFRONTIERS IN NEUROLOGY

Journal acronymFRONT NEUROL

Article number 793937

Volume13

Number of pages7

ISSN1664-2295

DOIhttps://doi.org/10.3389/fneur.2022.793937

Web address https://doi.org/10.3389/fneur.2022.793937

Self-archived copy’s web addresshttps://research.utu.fi/converis/portal/detail/Publication/174884377


Abstract

Objective: To characterize serum biomarkers in mitochondrial CHCHD10-linked spinal muscular atrophy Jokela (SMAJ) type for disease monitoring and for the understanding of pathogenic mechanisms.

Methods: We collected serum samples from a cohort of 49 patients with SMAJ, all carriers of the heterozygous c.197G>T p.G66V variant in CHCHD10. As controls, we used age- and sex-matched serum samples obtained from Helsinki Biobank. Creatine kinase and creatinine were measured by standard methods. Neurofilament light (NfL) and glial fibrillary acidic protein (GFAP) were measured with single molecule array (Simoa), fibroblast growth factor 21 (FGF-21), and growth differentiation factor 15 (GDF-15) with an enzyme-linked immunosorbent assay. For non-targeted plasma metabolite profiling, samples were analyzed with liquid chromatography high-resolution mass spectrometry. Disease severity was evaluated retrospectively by calculating a symptom-based score.

Results: Axon degeneration marker, NfL, was unexpectedly not altered in the serum of patients with SMAJ, whereas astrocytic activation marker, GFAP, was slightly decreased. Creatine kinase was elevated in most patients, particularly men. We identified six metabolites that were significantly altered in serum of patients with SMAJ in comparison to controls: increased creatine and pyruvate, and decreased creatinine, taurine, N-acetyl-carnosine, and succinate. Creatine correlated with disease severity. Altered pyruvate and succinate indicated a metabolic response to mitochondrial dysfunction; however, lactate or mitochondrial myopathy markers FGF-21 or GDF-15 was not changed.

Conclusions: Biomarkers of muscle mass and damage are altered in SMAJ serum, indicating a role for skeletal muscle in disease pathogenesis in addition to neurogenic damage. Despite the minimal mitochondrial pathology in skeletal muscle, signs of a metabolic shift can be detected.


Downloadable publication

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 11:07