A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Condenser capacity and hyperbolic diameter




TekijätNasser Mohamed MS, Rainio Oona, Vuorinen Matti

KustantajaElsevier

Julkaisuvuosi2022

JournalJournal of Mathematical Analysis and Applications

Artikkelin numero125870

Vuosikerta508

Numero1

eISSN1096-0813

DOIhttps://doi.org/10.1016/j.jmaa.2021.125870

Verkko-osoitehttps://doi.org/10.1016/j.jmaa.2021.125870

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/174813662


Tiivistelmä

Given a compact connected set E in the unit disk B2 , we give a new upper bound for the conformal capacity of the condenser (B2, E)  in terms of the hyperbolic diameter t of E. Moreover, for t >0, we construct a set of hyperbolic diameter t and apply novel numerical methods to show that it has larger capacity than a hyperbolic disk with the same diameter. The set we construct is called a Reuleaux triangle in hyperbolic geometry and it has constant hyperbolic width equal to t.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 19:42