A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Condenser capacity and hyperbolic diameter
Tekijät: Nasser Mohamed MS, Rainio Oona, Vuorinen Matti
Kustantaja: Elsevier
Julkaisuvuosi: 2022
Journal: Journal of Mathematical Analysis and Applications
Artikkelin numero: 125870
Vuosikerta: 508
Numero: 1
eISSN: 1096-0813
DOI: https://doi.org/10.1016/j.jmaa.2021.125870
Verkko-osoite: https://doi.org/10.1016/j.jmaa.2021.125870
Rinnakkaistallenteen osoite: https://research.utu.fi/converis/portal/detail/Publication/174813662
Given a compact connected set E in the unit disk B2 , we give a new upper bound for the conformal capacity of the condenser (B2, E) in terms of the hyperbolic diameter t of E. Moreover, for t >0, we construct a set of hyperbolic diameter t and apply novel numerical methods to show that it has larger capacity than a hyperbolic disk with the same diameter. The set we construct is called a Reuleaux triangle in hyperbolic geometry and it has constant hyperbolic width equal to t.
Ladattava julkaisu This is an electronic reprint of the original article. |