The Kellogg property under generalized growth conditions




Harjulehto Petteri, Juusti Jonne

PublisherWILEY-V C H VERLAG GMBH

2022

Mathematical News / Mathematische Nachrichten

MATHEMATISCHE NACHRICHTEN

MATH NACHR

295

2

345

362

18

0025-584X

1522-2616

DOIhttps://doi.org/10.1002/mana.201900521

https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.201900521

https://research.utu.fi/converis/portal/detail/Publication/174796714



We study minimizers of the Dirichlet phi-energy integral with generalized Orlicz growth. We prove the Kellogg property, the set of irregular points has zero capacity, and give characterizations of semiregular boundary points. The results are new ever for the special cases double phase and Orlicz growth.

Last updated on 2024-26-11 at 18:37