A1 Refereed original research article in a scientific journal
Ultrafast dissociation of ammonia: Auger Doppler effect and redistribution of the internal energy
Authors: Travnikova Oksana, Kukk Edwin, Hosseini Farzad, Granroth Sari, Itälä Eero, Marchenko Tatiana, Guillemin Renaud, Ismail Iyas, Moussaoui Roba, Journel Loïc, Bozek John, Püttner Ralph, Krasnov Pavel, Kimberg Victor, Gel'mukhanov Faris, Piancastelli Maria Novella, Simon Marc
Publisher: Royal Society of Chemistry
Publication year: 2022
Journal: Physical Chemistry Chemical Physics
Journal name in source: PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Journal acronym: PHYS CHEM CHEM PHYS
Volume: 24
Issue: 10
First page : 5842
Last page: 5854
Number of pages: 13
ISSN: 1463-9076
eISSN: 1463-9084
DOI: https://doi.org/10.1039/d1cp05499f
Web address : https://pubs.rsc.org/en/content/articlelanding/2022/cp/d1cp05499f
Preprint address: https://hal.sorbonne-universite.fr/hal-03598117/file/NH3_Doppler_PCCP_resubmission%20copy.pdf
We study vibrationally-resolved resonant Auger (RAS) spectra of ammonia recorded in coincidence with the NH2+ fragment, which is produced in the course of dissociation either in the core-excited 1s(-1)4a1(1) intermediate state or the first spectator 3a(-2)4a1(1) final state. Correlation of the NH2+ ion flight times with electron kinetic energies allows directly observing the Auger-Doppler dispersion for each vibrational state of the fragment. The median distribution of the kinetic energy release E-KER, derived from the coincidence data, shows three distinct branches as a function of Auger electron kinetic energy E-e: E-e + 1.75E(KER) = const for the molecular band; E-KER = const for the fragment band; and E-e + E-KER = const for the region preceding the fragment band. The deviation of the molecular band dispersion from E-e + E-KER = const is attributed to the redistribution of the available energy to the dissociation energy and excitation of the internal degrees of freedom in the molecular fragment. We found that for each vibrational line the dispersive behavior of E(KER)vs. E-e is very sensitive to the instrumental uncertainty in the determination of E-KER causing the competition between the Raman (E-KER + E-e = const) and Auger (E-e = const) dispersions: increase in the broadening of the finite kinetic energy release resolution leads to a change of the dispersion from the Raman to the Auger one.