A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

Heart rate variability estimation with joint accelerometer and gyroscope sensing




TekijätOlli Lahdenoja, Tero Hurnanen, Mojtaba Jafari Tadi, Mikko Pänkäälä, Tero Koivisto

ToimittajaAlan Murray

Konferenssin vakiintunut nimiComputers in Cardiology (CinC)

Julkaisuvuosi2016

JournalComputing in Cardiology

Kokoomateoksen nimiComputing in Cardiology Conference (CinC), 2016

Vuosikerta43

Aloitussivu717

Lopetussivu720

Sivujen määrä4

ISBN978-1-5090-0896-4

eISBN978-1-5090-0895-7

ISSN2325-887X

DOIhttps://doi.org/10.22489/CinC.2016.209-166

Verkko-osoitehttp://ieeexplore.ieee.org/document/7868843/

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/detail/Publication/17391066


Tiivistelmä

This paper describes a method for estimation of heart rate (HR) and heart rate variability (HRV) with accelerometers and gyroscopes. We denote this joint seismocardiography (SCG) and gyrocardiography (GCG) approach as SCG/GCG. In principle, SCG which is a well known method measures the linear mechanical movements of the heart and GCG is a new technique which measures angular motion due to the chest micro-vibrations caused by myocardial rotation. As electrocardiography (ECG), they can also be performed in non-invasive manner using a device in contact to subjects skin, for example. Our method extracts HRV parameters based on single-axis and multi-axes autocorrelation analysis (1-AC and 6-AC) of all simultaneously captured SCG/GCG axes. The results of each axes are combined to maintain reliable HR- and HRV. We validate our results with a comparison study between simultaneous ECG and SCG/GCG recordings using a study group of 29 healthy male volunteers. The study provides a promising approach for HRV estimation with modern wearable devices.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 22:04