A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

Exploring Spiking Neural Network on Coarse-Grain Reconfigurable Architectures




TekijätHassan Anwar, Syed M. A. H. Jafri, Sergei Dytckov, Masoud Daneshtalab, Masoumeh Ebrahimi, Ahmed Hemani

Konferenssin vakiintunut nimiInternational workshop on many-core embedded systems

Julkaisuvuosi2014

Kokoomateoksen nimiProceedings of International Workshop on Manycore Embedded Systems

Aloitussivu64

Lopetussivu67

Sivujen määrä4

ISBN978-1-4503-2822-7

DOIhttps://doi.org/10.1145/2613908.2613916

Verkko-osoitehttp://dl.acm.org/citation.cfm?id=2613916


Tiivistelmä

Today, recongurable architectures are becoming increas-

ingly popular as the candidate platforms for neural net-

works. Existing works, that map neural networks on re-

congurable architectures, only address either FPGAs or

Networks-on-chip, without any reference to the Coarse-Grain

Recongurable Architectures (CGRAs). In this paper we

investigate the overheads imposed by implementing spiking

neural networks on a Coarse Grained Recongurable Ar-

chitecture (CGRAs). Experimental results (using point to

point connectivity) reveal that up to 1000 neurons can be

connected, with an average response time of 4.4 msec.



Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 14:12