A1 Refereed original research article in a scientific journal
Twinfilin is required for actin-dependent developmental processes in Drosophila
Authors: Wahlstrom G, Vartiainen M, Yamamoto L, Mattila PK, Lappalainen P, Heino TI
Publisher: ROCKEFELLER UNIV PRESS
Publication year: 2001
Journal: Journal of Cell Biology
Journal name in source: JOURNAL OF CELL BIOLOGY
Journal acronym: J CELL BIOL
Volume: 155
Issue: 5
First page : 787
Last page: 795
Number of pages: 9
ISSN: 0021-9525
DOI: https://doi.org/10.1083/jcb.200108022
Abstract
The actin cytoskeleton is essential for cellular remodeling and many developmental and morphological processes. Twinfilin is a ubiquitous actin monomer-binding protein whose biological function has remained unclear. We discovered and cloned the Drosophila twinfilin homologue, and show that this protein is ubiquitously expressed in different tissues and developmental stages. A mutation in the twf gene leads to a number of developmental defects, including aberrant bristle morphology. This results from uncontrolled polymerization of actin filaments and misori-entation of actin bundles in developing bristles. In wildtype bristles, twinfilin localizes diffusively to cytoplasm and to the ends of actin bundles, and may therefore be involved in localization of actin monomers in cells. We also show that twinfilin and the ADF/cofilin encoding gene twinstar interact genetically in bristle morphogenesis. These results demonstrate that the accurate regulation of size and dynamics of the actin monomer pool by twinfilin is essential for a number of actin-dependent developmental processes in multicellular eukaryotes.
The actin cytoskeleton is essential for cellular remodeling and many developmental and morphological processes. Twinfilin is a ubiquitous actin monomer-binding protein whose biological function has remained unclear. We discovered and cloned the Drosophila twinfilin homologue, and show that this protein is ubiquitously expressed in different tissues and developmental stages. A mutation in the twf gene leads to a number of developmental defects, including aberrant bristle morphology. This results from uncontrolled polymerization of actin filaments and misori-entation of actin bundles in developing bristles. In wildtype bristles, twinfilin localizes diffusively to cytoplasm and to the ends of actin bundles, and may therefore be involved in localization of actin monomers in cells. We also show that twinfilin and the ADF/cofilin encoding gene twinstar interact genetically in bristle morphogenesis. These results demonstrate that the accurate regulation of size and dynamics of the actin monomer pool by twinfilin is essential for a number of actin-dependent developmental processes in multicellular eukaryotes.
Downloadable publication This is an electronic reprint of the original article. |