A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

Locating-dominating codes in paths




TekijätExoo G, Junnila V, Laihonen T

KustantajaELSEVIER SCIENCE BV

Julkaisuvuosi2011

JournalDiscrete Mathematics

Tietokannassa oleva lehden nimiDISCRETE MATHEMATICS

Lehden akronyymiDISCRETE MATH

Numero sarjassa17

Vuosikerta311

Numero17

Aloitussivu1863

Lopetussivu1873

Sivujen määrä11

ISSN0012-365X

DOIhttps://doi.org/10.1016/j.disc.2011.05.004

Rinnakkaistallenteen osoitehttps://research.utu.fi/converis/portal/Publication/1348692


Tiivistelmä
Bertrand, Charon, Hudry and Lobstein studied, in their paper in 2004 [1] r-locating-dominating codes in paths P(n). They conjectured that if r >= 2 is a fixed integer, then the smallest cardinality of an r-locating-dominating code in P(n), denoted by M(r)(LD) (P(n)), satisfies M(r)(LD)(P(n)) = [(n + 1)/3] for infinitely many values of n. We prove that this conjecture holds. In fact, we show a stronger result saying that for any r >= 3 we have M(r)(LD) (P(n)) = [(n + 1)/3] for all n >= n(r), when n(r) is large enough. In addition, we solve a conjecture on location-domination with segments of even length in the infinite path. (C) 2011 Elsevier B.V. All rights reserved.

Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 18:08