Jarkko Peltomäki
 
- Initial nonrepetitive complexity of regular episturmian words and their Diophantine exponents  (2024)  
- European Journal of Combinatorics
 
 - Automatic winning shifts  (2022)  
- Information and Computation
 
 - On prefix palindromic length of automatic words  (2021)  
- Theoretical Computer Science
 
 - Standard words and solutions of the word equation X_1^2 ··· X_n^2 = (X_1 ··· X_n)^2  (2021)  
- Journal of Combinatorial Theory, Series A
 
 - Abelian periods of factors of Sturmian words  (2020)  
- Journal of Number Theory
 
 - All growth rates of abelian exponents are attained by infinite binary words  (2020)  
- LIPICS – Leibniz international proceedings in informatics
 
 - Avoiding abelian powers cyclically  (2020)  
- Advances in Applied Mathematics
 
 - More on the dynamics of the symbolic square root map  (2020)  
- Theoretical Computer Science
 
 - On k-abelian equivalence and generalized Lagrange spectra  (2020)  
- Acta Arithmetica
 
 - Automatic sequences based on Parry or Bertrand numeration systems  (2019)  
- Advances in Applied Mathematics
 
 - Every nonnegative real number is an abelian critical exponent  (2019)  
- Lecture Notes in Computer Science
 
 - On winning shifts of marked uniform substitutions  (2019)  
- RAIRO: Informatique Théorique et Applications / RAIRO: Theoretical Informatics and Applications
 
 - A square root map on Sturmian words  (2017)  
- The Electronic Journal of Combinatorics
 
 - More on the dynamics of the symbolic square root map  (2017)  
- Lecture Notes in Computer Science
 
 - On winning shifts of generalized Thue-Morse substitutions  (2017)  
- TUCS Lecture Notes
 
 - Abelian powers and repetitions in Sturmian words  (2016)  
- Theoretical Computer Science
 
 - Privileged Words and Sturmian Words  (2016)   Peltomäki Jarkko
 - Remarks on privileged words  (2016)  
- International Journal of Foundations of Computer Science
 
 - A square root map on Sturmian words (Extended abstract)  (2015)  
- Lecture Notes in Computer Science
 
 - Characterization of repetitions in Sturmian words: A new proof  (2015)  
- Information Processing Letters
 
 



