Jukka Heikkonen
Doctor of technology
jukhei@utu.fi ORCID-tunniste: https://orcid.org/0000-0002-2468-5708 |
Data analysis; machine learning; sensor fusion data processing; autonomous systems; computer vision; pattern recognition; GIS data processing; remote sensing
Head of the algorithms and computational intelligence (ACI) research group. See current activities/projects from the Research section below
Jukka Heikkonen has been a professor of computer science of University of Turku, Finland, since 2009. His research as the head of the Algorithms and Computational Intelligent (ACI) research group is related to data analytics, machine learning and autonomous systems. Currently he is focusing on machine learning based data/sensor fusion applied for pattern recognition, situational awareness modelling of autonomous systems, and GIS data analysis in geographical applications. He has worked at top level research laboratories and Center of Excellences in Finland and international organizations (European Commission, Japan) and has led many international and national research projects. He has authored more than 150 scientific articles.
Some examples of current research activities/projects:
Artificial Intelligence based Virtual Control Room for the Arctic (AI-ARC)
1.9.2021 – 31.8.2024, H2020 project
The main objective of the AI-ARC proposal is to create an innovative, robust, efficient, and user-friendly artificial intelligence (AI) based- platform for coast and border guards, which allows traditional and VR-based interfaces to adapt to users’ preferences in terms of information management, anomaly detection, risk analyses and interoperability; in order to realize a comprehensive surveillance system that delivers powerful sensor fusion based situational awareness for decision making, and safety for all maritime actors.
Exploration Information System (EIS)
1.4.2022-31.3.2025, Horizon Europe project
EIS will develop new data analysis methods by applying artificial intelligence, machine learning, deep learning into mineral prospectivity mapping together with new geomodels and mineral systems modelling. Methods developed reduce the current high exploration costs and improve the accuracy of the targeting of the early phase exploration.
Trafficability Prediction and Route Planning for Forest Machines
1.9.2020-31.7.2024, Academy of Finland
The objective of the project is to develop novel machine learning (ML) approach for terrain trafficability prediction for forest machines based on model-data fusion and to develop efficient route planning approaches based on the trafficability forecasts.
Smart terminals (Sea3value SMARTER)
1.1.2021-28.2.2023, Business Finland
UTU is developing data analytics solutions for smart harbour operations. The objective is to add value to stakeholders by improved sharing of information, and by redesigning processes for operational optimisation, improved safety, and optimise people and cargo flow. The ship turnaround use case focuses on optimising ships visits in harbour. The truck traffic use case focuses on developing a predictive real-time traffic situational awareness model to optimise the cargo logistics to and from the port. The passenger flow use case improves the passenger flow on ropax-ports by developing models and solutions to support collective transportation, ride sharing and other mechanisms to relieve the congestion at ports.
MAATI – Soil type estimation
1.8.2021-31.7.2022, Ministry of Agriculture
This project develops machine learning methods for soil type classification for whole Finland. This includes the use of remote sensing datasets (such as Sentinel 1 and 2 satellites), up-to-date open spatial databases for peatlands and nutrient classes (swamp types), land use (forest / field / wetland / peat production) and drainage. The methods are first developed and tested in three pilot areas in Finland: 1) Keminmaa, 2) Etelä-Pohjanmaa, and 3) Itä-Suomi. The research includes the use of classical pattern recognition approaches based on predefined features and feature selection, and also deep learning approaches and their comparisons. The research is done in collaboration with Natural Resource Institute and Geological Survey of Finland.
Compressive Sensing and Machine Learning Techniques for Radar Applications
1.1.2021-31.12.2022, Finnish Defence Forces
The project investigates integration of Compressive Sensing(CS) and machine learning for radar applications improving the speed and applicability of CS techniques using deep net architectures with learned signal priors, while supporting learning in data starved regimes with CS based models. The work at the UTU is related to the detection and classification of targets in Gaussian and Non-Gaussian clutter.
Currently responsible teacher in the following courses:
TKO 3120 Machine Learning and Pattern Recognition
TKO 5328 Erikoistyö
Supervisor in graduation theses (MSc, BSc).
- An Efficient Multi-sensor Fusion Approach for Object Detection in Maritime Environments (2018)
- Proceedings of the IEEE international conference on intelligent transportation systems
(A4 Vertaisarvioitu artikkeli konferenssijulkaisussa) - Anomaly-based Intrusion Detection Using Deep Neural Networks (2018)
- International Journal of Digital Content Technology and Its Applications
(A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä ) - Comparison of estimators and feature selection procedures in forest inventory based on airborne laser scanning and digital aerial imagery (2018)
- Scandinavian Journal of Forest Research
(A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä ) - Future Educational Technology with Big Data and Learning Analytics2018
- Proceedings of the IEEE International Symposium on Industrial ElectronicsJournal of the American Heart Association
(A4 Vertaisarvioitu artikkeli konferenssijulkaisussa) - Image Analysis and Development of Graphical User Interface for Pole Vault Action (2018)
- Journal of image and graphics
(A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä ) - Molecular atlas of postnatal mouse heart development (2018)
(A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä ) - Object Detection Based on Multi-sensor Proposal Fusion in Maritime Environment (2018) 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA) Fahimeh Farahnakian, Mohammad-Hashem Haghbayan, Jonne Poikonen, Markus Laurinen, Paavo Nevalainen, Jukka Heikkonen
(A4 Vertaisarvioitu artikkeli konferenssijulkaisussa) - Playtime Measurement with Survival Analysis (2018)
- IEEE Transactions on Computational Intelligence and AI in GamesAnalytical Chemistry
(A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä ) - Potentials of big data for integrated territorial policy development in the European growth corridors (Big Data & EGC). Targeted analysis. Interim Report (2018) Helka Kalliomäki, Ira Ahokas, Nicolas Balcom Raleigh, Jukka Heikkonen, Pekko Lindblom, Paavo Nevalainen, Siiri Silm, Anto Aasa
(D4 Julkaistu kehittämis- tai tutkimusraportti tai -selvitys ) - Ship Movement Prediction Using k-NN Method (2018) 2018 Baltic Geodetic Congress (BGC Geomatics 2018). 21-23 June 2018, Olsztyn, Poland. Proceedings Petra Virjonen, Paavo Nevalainen, Tapio Pahikkala, Jukka Heikkonen
(A4 Vertaisarvioitu artikkeli konferenssijulkaisussa) - Time-Gated Raman Spectroscopy for Quantitative Determination of Solid-State Forms of Fluorescent Pharmaceuticals (2018)
(A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä ) - Tree Detection around Forest Harvester Based on Onboard LiDAR Measurements (2018) 2018 Baltic Geodetic Congress (BGC-Geomatics 2018), 21-23 June 2018, Olsztyn, Poland. Proceedings Sihvo Satu, Virjonen Petra, Nevalainen Paavo, Heikkonen Jukka
(A4 Vertaisarvioitu artikkeli konferenssijulkaisussa) - Wheel rut measurements by forest machine-mounted LiDAR sensors - accuracy and potential for operational applications? (2018)
- International Journal of Forest Engineering
(A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä ) - A/B-Test of Retention and Monetization Using the Cox Model (2017) Proceedings, The Thirteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-17) Markus Viljanen, Antti Airola, Jukka Heikkonen, Tapio Pahikkala
(A4 Vertaisarvioitu artikkeli konferenssijulkaisussa) - Estimating the prediction performance of spatial models via spatial k-fold cross validation (2017)
- International Journal of Geographical Information Science
(A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä ) - Estimating the Rut Depth by UAV Photogrammetry (2017)
- Remote Sensing
(A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä ) - Real-Time Swimmer Tracking on Sparse Camera Array (2017) Pattern Recognition Applications and Methods: 5th International Conference, ICPRAM 2016, Rome, Italy, February 24-26, 2016, Revised Selected Papers Paavo Nevalainen, M. Hashem Haghbayan, Antti Kauhanen, Jonne Pohjankukka, Mikko-Jussi Laakso, Jukka Heikkonen
(A4 Vertaisarvioitu artikkeli konferenssijulkaisussa) - Triangular Curvature Approximation of Surfaces: Filtering the Spurious Mode (2017) Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2017) Paavo Nevalainen, Ivan Jambor, Jonne Pohjankukka, Jukka Heikkonen and Tapio Pahikkala
(A4 Vertaisarvioitu artikkeli konferenssijulkaisussa) - (2016)
- Remote Sensing
(A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä ) - Heuristicallly targeted Minimum Description Length test for stone detection from public point cloud data (2016) Proceedings of the Ninth Workshop on Information Theoretic Methods in Science and Engineering Paavo Nevalainen , Juuso Suomi , Jukka Heikkonen
(D3 Artikkeli ammatillisessa konferenssijulkaisussa )