Jukka Heikkonen
Doctor of technology
jukhei@utu.fi ORCID-tunniste: https://orcid.org/0000-0002-2468-5708 |
Data analysis; machine learning; sensor fusion data processing; autonomous systems; computer vision; pattern recognition; GIS data processing; remote sensing
Head of the algorithms and computational intelligence (ACI) research group. See current activities/projects from the Research section below
Jukka Heikkonen has been a professor of computer science of University of Turku, Finland, since 2009. His research as the head of the Algorithms and Computational Intelligent (ACI) research group is related to data analytics, machine learning and autonomous systems. Currently he is focusing on machine learning based data/sensor fusion applied for pattern recognition, situational awareness modelling of autonomous systems, and GIS data analysis in geographical applications. He has worked at top level research laboratories and Center of Excellences in Finland and international organizations (European Commission, Japan) and has led many international and national research projects. He has authored more than 150 scientific articles.
Some examples of current research activities/projects:
Artificial Intelligence based Virtual Control Room for the Arctic (AI-ARC)
1.9.2021 – 31.8.2024, H2020 project
The main objective of the AI-ARC proposal is to create an innovative, robust, efficient, and user-friendly artificial intelligence (AI) based- platform for coast and border guards, which allows traditional and VR-based interfaces to adapt to users’ preferences in terms of information management, anomaly detection, risk analyses and interoperability; in order to realize a comprehensive surveillance system that delivers powerful sensor fusion based situational awareness for decision making, and safety for all maritime actors.
Exploration Information System (EIS)
1.4.2022-31.3.2025, Horizon Europe project
EIS will develop new data analysis methods by applying artificial intelligence, machine learning, deep learning into mineral prospectivity mapping together with new geomodels and mineral systems modelling. Methods developed reduce the current high exploration costs and improve the accuracy of the targeting of the early phase exploration.
Trafficability Prediction and Route Planning for Forest Machines
1.9.2020-31.7.2024, Academy of Finland
The objective of the project is to develop novel machine learning (ML) approach for terrain trafficability prediction for forest machines based on model-data fusion and to develop efficient route planning approaches based on the trafficability forecasts.
Smart terminals (Sea3value SMARTER)
1.1.2021-28.2.2023, Business Finland
UTU is developing data analytics solutions for smart harbour operations. The objective is to add value to stakeholders by improved sharing of information, and by redesigning processes for operational optimisation, improved safety, and optimise people and cargo flow. The ship turnaround use case focuses on optimising ships visits in harbour. The truck traffic use case focuses on developing a predictive real-time traffic situational awareness model to optimise the cargo logistics to and from the port. The passenger flow use case improves the passenger flow on ropax-ports by developing models and solutions to support collective transportation, ride sharing and other mechanisms to relieve the congestion at ports.
MAATI – Soil type estimation
1.8.2021-31.7.2022, Ministry of Agriculture
This project develops machine learning methods for soil type classification for whole Finland. This includes the use of remote sensing datasets (such as Sentinel 1 and 2 satellites), up-to-date open spatial databases for peatlands and nutrient classes (swamp types), land use (forest / field / wetland / peat production) and drainage. The methods are first developed and tested in three pilot areas in Finland: 1) Keminmaa, 2) Etelä-Pohjanmaa, and 3) Itä-Suomi. The research includes the use of classical pattern recognition approaches based on predefined features and feature selection, and also deep learning approaches and their comparisons. The research is done in collaboration with Natural Resource Institute and Geological Survey of Finland.
Compressive Sensing and Machine Learning Techniques for Radar Applications
1.1.2021-31.12.2022, Finnish Defence Forces
The project investigates integration of Compressive Sensing(CS) and machine learning for radar applications improving the speed and applicability of CS techniques using deep net architectures with learned signal priors, while supporting learning in data starved regimes with CS based models. The work at the UTU is related to the detection and classification of targets in Gaussian and Non-Gaussian clutter.
Currently responsible teacher in the following courses:
TKO 3120 Machine Learning and Pattern Recognition
TKO 5328 Erikoistyö
Supervisor in graduation theses (MSc, BSc).
- Information Influence in Society’s Information Environment: An Empirical Analysis Using the Grounded Theory (2020)
- Journal of Information Warfare
(A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä ) - Localization in Unstructured Environments: Towards Autonomous Robots in Forests with Delaunay Triangulation (2020)
- Remote Sensing
(A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä ) - Machine learning-based mapping of micro-topographic earthquake-induced paleo Pulju moraines and liquefaction spreads from a digital elevation model acquired through laser scanning (2020)
- Geomorphology
(A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä ) - Measuring Player Retention and Monetization Using the Mean Cumulative Function (2020)
- IEEE Transactions on Games
(A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä ) - Monocular visual odometry based on hybrid parameterization (2020)
- International Conference on Machine Vision
(A4 Vertaisarvioitu artikkeli konferenssijulkaisussa) - Navigation and Mapping in Forest Environment Using Sparse Point Clouds (2020)
- Remote Sensing
(A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä ) - Navigation of Autonomous Swarm of Drones Using Translational Coordinates (2020)
- Lecture Notes in Computer Science
(A4 Vertaisarvioitu artikkeli konferenssijulkaisussa) - Night vision obstacle detection and avoidance based on Bio-Inspired Vision Sensors (2020)
- Proceedings of IEEE Sensors
(A4 Vertaisarvioitu artikkeli konferenssijulkaisussa) - Pattern recognition of LiDAR data and sediment anisotropy advocate a polygenetic subglacial mass-flow origin for the Kemijärvi hummocky moraine field in northern Finland (2020)
- Geomorphology
(A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä ) - RGB-depth Fusion Framework for Object Detection in Autonomous Vehicles (2020) The 14th International Conference on Signal Processing and Communication Systems (ICSPCS) Farahnakian Fahimeh, Heikkonen Jukka
(A4 Vertaisarvioitu artikkeli konferenssijulkaisussa) - Towards dynamic forest trafficability prediction using open spatial data, hydrological modelling and sensor technology (2020)
- Forestry
(A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä ) - Towards Dynamic Monocular Visual Odometry Based on an Event Camera and IMU Sensor (2020) Intelligent Transport Systems. From Research and Development to the Market Uptake Sherif A. S. Mohamed, Mohammad-Hashem Haghbayan, Mohammed Rabah, Jukka Heikkonen, Hannu Tenhunen, Juha Plosila
(A4 Vertaisarvioitu artikkeli konferenssijulkaisussa) - Towards Real-Time Edge Detection for Event Cameras Based on Lifetime and Dynamic Slicing (2020)
- Advances in Intelligent Systems and Computing
(A4 Vertaisarvioitu artikkeli konferenssijulkaisussa) - Unmanned Aerial Vehicles (UAVs): Collision Avoidance Systems and Approaches (2020)
- IEEE Access
(A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä ) - Use of an IoT Technology to Analyse the Inertial Measurement of Smart Ping-pong Paddle (2020)
- Computer Science and Information Technology
(A4 Vertaisarvioitu artikkeli konferenssijulkaisussa) - Analysis and Enhancement of Quantum Efficiency for Multi-Junction Solar Cell (2019)
- Conference Record IEEE Photovoltaic Specialists Conference
(A4 Vertaisarvioitu artikkeli konferenssijulkaisussa) - A Survey on Odometry for Autonomous Navigation Systems (2019)
- IEEE Access
(A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä ) - Comparative Analysis of Image Fusion Methods in Marine Environment (2019) 2019 IEEE International Symposium on Robotic and Sensors Environments (ROSE) Fahimeh Farahnakian, Parisa Movahedi, Jussi Poikonen, Eero Lehtonen, Dimitrios Makris, Jukka Heikkonen
(A4 Vertaisarvioitu artikkeli konferenssijulkaisussa) - Deep Convolutional Neural Network-based Fusion of RGB and IR Images in Marine Environment (2019) 2019 IEEE Intelligent Transportation Systems Conference (ITSC) Fahimeh Farahnakian, Jussi Poikonen, Markus Laurinen, Jukka Heikkonen
(A4 Vertaisarvioitu artikkeli konferenssijulkaisussa) - Edge and Fog Computing Enabled AI for IoT-An Overview (2019) 2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS) Zhuo Zou, Yi Jin, Paavo Nevalainen, Yuxiang Huan, Jukka Heikkonen, Tomi Westerlund
(A4 Vertaisarvioitu artikkeli konferenssijulkaisussa)