A1 Refereed original research article in a scientific journal
Imidotungsten(VI) complexes with chelating amino and imino phenolates
Authors: Hanninen MM, Sillanpaa R, Kivela H, Lehtonen A
Publisher: ROYAL SOC CHEMISTRY
Publication year: 2011
Journal: Dalton Transactions
Journal name in source: DALTON TRANSACTIONS
Journal acronym: DALTON T
Number in series: 12
Volume: 40
Issue: 12
First page : 2868
Last page: 2874
Number of pages: 7
ISSN: 1477-9226
DOI: https://doi.org/10.1039/c0dt01438a
Self-archived copy’s web address: https://research.utu.fi/converis/portal/Publication/1697996
Abstract
The reaction of WOCl(4) with 2,4-di-tert-butyl-6-((isopropylamino)methyl)phenol followed by the reaction with phenyl isocyanate leads to the formation of imidotungsten(VI) complex [W(NPh)Cl(3)(OC(6)H(3)(CH(2)NH-i-Pr)-2-t-Bu(2)-4,6)] 4 with a chelating aminophenolate ligand. When the same procedure was applied using aminophenols with bulkier substituents in the amino group, the final product was an unexpected Schiff-base complex [W(NPh)Cl(3)(OC(6)H(3)(CH = NPh)-2-t-Bu(2)-4,6)] 5, where the ligand is derived from 2,4-di-tert-butyl-6-((phenylimino)methyl)phenol. Complex 5 is also formed in the thermal degradation of 4. On the whole, 5 appears to be formed by a disproportionation of intermediate compounds, which are analogous to complex 4. The solid-state structures of 4 and 5 have been determined by X-ray crystallography whereas the solution structures were studied by (1)H and (13)C NMR.
The reaction of WOCl(4) with 2,4-di-tert-butyl-6-((isopropylamino)methyl)phenol followed by the reaction with phenyl isocyanate leads to the formation of imidotungsten(VI) complex [W(NPh)Cl(3)(OC(6)H(3)(CH(2)NH-i-Pr)-2-t-Bu(2)-4,6)] 4 with a chelating aminophenolate ligand. When the same procedure was applied using aminophenols with bulkier substituents in the amino group, the final product was an unexpected Schiff-base complex [W(NPh)Cl(3)(OC(6)H(3)(CH = NPh)-2-t-Bu(2)-4,6)] 5, where the ligand is derived from 2,4-di-tert-butyl-6-((phenylimino)methyl)phenol. Complex 5 is also formed in the thermal degradation of 4. On the whole, 5 appears to be formed by a disproportionation of intermediate compounds, which are analogous to complex 4. The solid-state structures of 4 and 5 have been determined by X-ray crystallography whereas the solution structures were studied by (1)H and (13)C NMR.
Downloadable publication This is an electronic reprint of the original article. |