A1 Refereed original research article in a scientific journal
Mixed-Host Systems with a Simple Device Structure for Efficient Solution-Processed Organic Light-Emitting Diodes of a Red-Orange TADF Emitter
Authors: Kumar M, Pereira L
Publisher: AMER CHEMICAL SOC
Publication year: 2020
Journal: ACS Omega
Journal name in source: ACS OMEGA
Journal acronym: ACS OMEGA
Volume: 5
First page : 2196
Last page: 2204
Number of pages: 9
ISSN: 2470-1343
DOI: https://doi.org/10.1021/acsomega.9b03253
Abstract
Charge balance, concentration quenching, and exciton confinement are the most important factors for realizing the use of thermally activated delayed fluorescence (TADF) emitters for organic light-emitting diodes. Red-orange organic light-emitting diodes of a TADF emitter 2-[4 (diphenylamino)phenyl]-10,10-dioxide-9H-thioxanthen-9-one (TXO-TPA) have been reported by doping in a mixed p-type host system of poly(N-vinylcarbazole) (PVK) and 1,3-bis(N-carbazolyl)benzene (mCP) via solution-processed. We have demonstrated the peak external quantum efficiency of 9.75%, maximum current efficiency of 19.36 cd/A, and power efficiency of 12.17 lm/W along with a CIE coordinate of (0.45, 0.51). The devices were compared with different doping concentrations of TXO-TPA, and a comparative investigation on the effect of the thickness electron transport layer was studied. The results clearly indicated that this solution-processed TXO-TPA device structure is a promising strategy to develop highly efficient but simple OLED structures.
Charge balance, concentration quenching, and exciton confinement are the most important factors for realizing the use of thermally activated delayed fluorescence (TADF) emitters for organic light-emitting diodes. Red-orange organic light-emitting diodes of a TADF emitter 2-[4 (diphenylamino)phenyl]-10,10-dioxide-9H-thioxanthen-9-one (TXO-TPA) have been reported by doping in a mixed p-type host system of poly(N-vinylcarbazole) (PVK) and 1,3-bis(N-carbazolyl)benzene (mCP) via solution-processed. We have demonstrated the peak external quantum efficiency of 9.75%, maximum current efficiency of 19.36 cd/A, and power efficiency of 12.17 lm/W along with a CIE coordinate of (0.45, 0.51). The devices were compared with different doping concentrations of TXO-TPA, and a comparative investigation on the effect of the thickness electron transport layer was studied. The results clearly indicated that this solution-processed TXO-TPA device structure is a promising strategy to develop highly efficient but simple OLED structures.