A4 Refereed article in a conference publication

Padding in the Mathematics of Arrays




AuthorsChetioui Benjamin, Abusdal Ole, Haveraaen Magne, Järvi Jaakko, Mullin Lenore

EditorsTze Meng Low, Jeremy Gibbons

Conference nameACM SIGPLAN International Conference on Programming Language Design and Implementation

Publishing placeNew York, NY

Publication year2021

JournalACM Sigplan Conference on Programming Language Design and Implementation

Book title ARRAY 2021: Proceedings of the 7th ACM SIGPLAN International Workshop on Libraries, Languages and Compilers for Array Programming

First page 15

Last page26

ISBN978-1-4503-8466-7

ISSN1531-7102

DOIhttps://doi.org/10.1145/3460944.3464311(external)


Abstract

Multi-dimensional array manipulation constitutes a core component of numerous numerical methods, e.g. finite difference solvers of Partial Differential Equations (PDEs). The efficiency of such computations is tightly connected to traversing array data in a hardware-friendly way.

The Mathematics of Arrays (MoA) allows reasoning about array computations at a high level and enables systematic transformations of array-based programs. We have previously shown that stencil computations reduce to MoA's Denotational Normal Form (DNF).

Here we bring to light MoA's Operational Normal Forms (ONFs) that allow for adapting array computations to hardware characteristics. ONF transformations start from the DNF. Alongside the ONF transformations, we extend MoA with rewriting rules for padding. These new rules allow both a simplification of array indexing and a systematic approach to introducing halos to PDE solvers. Experiments on various architectures confirm the flexibility of the approach.



Last updated on 2024-26-11 at 17:11