A1 Refereed original research article in a scientific journal

Multiplexed Affinity Characterization of Protein Binders Directly from a Crude Cell Lysate by Covalent Capture on Suspension Bead Arrays




AuthorsHuovinen Tuomas, Lindenburg Laurens, Minter Ralph, Hollfelder Florian

PublisherAMER CHEMICAL SOC

Publication year2021

JournalAnalytical Chemistry

Journal name in sourceANALYTICAL CHEMISTRY

Journal acronymANAL CHEM

Volume93

Issue4

First page 2166

Last page2173

Number of pages8

ISSN0003-2700

DOIhttps://doi.org/10.1021/acs.analchem.0c03992


Abstract
The precise determination of affinity and specificity is a crucial step in the development of new protein reagents for therapy and diagnostics. Paradoxically, the selection of protein binders, e.g., antibody fragments, from large combinatorial repertoires is a rapid process compared to the subsequent characterization of selected clones. Here we demonstrate the use of suspension bead arrays (SBA) in combination with flow cytometry to facilitate the post-selection analysis of binder affinities. The array is designed to capture the proteins of interest (POIs) covalently on the surface of superparamagnetic color-coded microbeads directly from expression cell lysate, based on SpyTag-SpyCatcher coupling by isopeptide bond formation. This concept was validated by analyzing the affinities of a typical phage display output, i.e., clones consisting of single-chain variable fragment antibodies (scFvs), as SpyCatcher fusions in 12- and 24-plex SBA formats using a standard three-laser flow cytometer. We demonstrate that the equilibrium dissociation constants (K-d) obtained from multiplexed SBA assays correlate well with experiments performed on a larger scale, while the antigen consumption was reduced >100-fold compared to the conventional 96-well plate format. Protein screening and characterization by SBAs is a rapid and reagent-saving analytical format for combinatorial protein engineering to address specificity maturation and cross-reactivity profiling of antibodies.



Last updated on 2024-26-11 at 22:34