A1 Refereed original research article in a scientific journal
A non-targeted metabolite profiling pilot study suggests that tryptophan and lipid metabolisms are linked with ADHD-like behaviours in dogs
Authors: Puurunen J, Sulkama S, Tiira K, Araujo C, Lehtonen M, Hanhineva K, Lohi H
Publication year: 2016
Journal: Behavioral and Brain Functions
Journal name in source: Behavioral and brain functions : BBF
Journal acronym: Behav Brain Funct
Volume: 12
Issue: 1
Number of pages: 13
ISSN: 1744-9081
eISSN: 1744-9081
DOI: https://doi.org/10.1186/s12993-016-0112-1
Abstract
Attention deficit hyperactivity disorder (ADHD) is a prevalent and multifactorial neuropsychiatric disorder in the human population worldwide. Complex etiology and clinical heterogeneity have challenged the research, diagnostics and treatment of the disease. Hyperactive and impulsive behaviour has also been observed in dogs, and they could offer a physiologically relevant model for human ADHD. As a part of our ongoing study to understand the molecular etiology of canine anxiety traits, this study was aimed to pilot an approach to identify metabolic biomarkers in canine ADHD-like behaviours for research, diagnostics and treatment purposes.\nWe collected fresh plasma samples from 22 German Shepherds with varying ADHD-like behaviours. All dogs were on the same controlled diet for 2 weeks prior to sampling. A liquid chromatography combined with mass spectrometry (LC-MS)-based non-targeted metabolite profiling was performed to identify plasma metabolites correlating with the ADHD-like behaviour of the dogs.\n < 0.05), and three of them [sn-1 LysoPC(18:3), PC(18:3/18:2) and sn-1 LysoPE(18:2)] had significant correlations also after FDR correction (pFDR < 0.05). Phospholipids were found to negatively correlate with ADHD-like behavioural scores, whereas tryptophan metabolites 3-indolepropionic acid (IPA) and kynurenic acid (KYNA) had negative and positive correlations with ADHD-like behavioural scores, respectively.\nOur study identified associations between canine ADHD-like behaviours and metabolites that are involved in lipid and tryptophan metabolisms. The identified metabolites share similarity with earlier findings in human and rodent ADHD models. However, a larger replication study is warranted to validate the discoveries prior to further studies to understand the biological role of the identified metabolites in canine ADHD-like behaviours.\nBACKGROUND\nMETHODS\nRESULTS\nCONCLUSIONS
Attention deficit hyperactivity disorder (ADHD) is a prevalent and multifactorial neuropsychiatric disorder in the human population worldwide. Complex etiology and clinical heterogeneity have challenged the research, diagnostics and treatment of the disease. Hyperactive and impulsive behaviour has also been observed in dogs, and they could offer a physiologically relevant model for human ADHD. As a part of our ongoing study to understand the molecular etiology of canine anxiety traits, this study was aimed to pilot an approach to identify metabolic biomarkers in canine ADHD-like behaviours for research, diagnostics and treatment purposes.\nWe collected fresh plasma samples from 22 German Shepherds with varying ADHD-like behaviours. All dogs were on the same controlled diet for 2 weeks prior to sampling. A liquid chromatography combined with mass spectrometry (LC-MS)-based non-targeted metabolite profiling was performed to identify plasma metabolites correlating with the ADHD-like behaviour of the dogs.\n < 0.05), and three of them [sn-1 LysoPC(18:3), PC(18:3/18:2) and sn-1 LysoPE(18:2)] had significant correlations also after FDR correction (pFDR < 0.05). Phospholipids were found to negatively correlate with ADHD-like behavioural scores, whereas tryptophan metabolites 3-indolepropionic acid (IPA) and kynurenic acid (KYNA) had negative and positive correlations with ADHD-like behavioural scores, respectively.\nOur study identified associations between canine ADHD-like behaviours and metabolites that are involved in lipid and tryptophan metabolisms. The identified metabolites share similarity with earlier findings in human and rodent ADHD models. However, a larger replication study is warranted to validate the discoveries prior to further studies to understand the biological role of the identified metabolites in canine ADHD-like behaviours.\nBACKGROUND\nMETHODS\nRESULTS\nCONCLUSIONS