A1 Refereed original research article in a scientific journal

Perpendicular Diffusion of Solar Energetic Particles: Model Results and Implications for Electrons




AuthorsStrauss RD, Dresing N, Engelbrecht NE

PublisherIOP PUBLISHING LTD

Publication year2017

JournalAstrophysical Journal

Journal name in sourceASTROPHYSICAL JOURNAL

Journal acronymASTROPHYS J

Article numberARTN 43

Volume837

Issue1

Number of pages17

ISSN0004-637X

DOIhttps://doi.org/10.3847/1538-4357/aa5df5


Abstract
The processes responsible for the effective longitudinal transport of solar energetic particles (SEPs) are still not completely understood. We address this issue by simulating SEP electron propagation using a spatially 2D transport model that includes perpendicular diffusion. By implementing, as far as possible, the most reasonable estimates of the transport (diffusion) coefficients, we compare our results, in a qualitative manner, to recent observations at energies of 55-105 keV, focusing on the longitudinal distribution of the peak intensity, the maximum anisotropy, and the onset time. By using transport coefficients that are derived from first principles, we limit the number of free parameters in the model to (i) the probability of SEPs following diffusing magnetic field lines, quantified by a is an element of [0, 1], and (ii) the broadness of the Gaussian injection function. It is found that the model solutions are extremely sensitive to the magnitude of the perpendicular diffusion coefficient and relatively insensitive to the form of the injection function as long as a reasonable value of a. =. 0.2 is used. We illustrate the effects of perpendicular diffusion on the model solutions and discuss the viability of this process as a dominant mechanism by which SEPs are transported in longitude. Lastly, we try to quantity the effectiveness of perpendicular diffusion as an interplay between the magnitude of the relevant diffusion coefficient and the SEP intensity gradient driving the diffusion process. It follows that perpendicular diffusion is extremely effective early in an SEP event when large intensity gradients are present, while the effectiveness quickly decreases with time thereafter.



Last updated on 2024-26-11 at 20:00