A4 Vertaisarvioitu artikkeli konferenssijulkaisussa
Finite Games with Perturbed Payoffs
Tekijät: Emelichev Vladimir, Nikulin Yury
Toimittaja: Nicholas Olenev, Yuri Evtushenko, Michael Khachay, Vlasta Malkova
Konferenssin vakiintunut nimi: International Conference on Optimization and Applications
Julkaisuvuosi: 2020
Journal: Communications in Computer and Information Science
Kokoomateoksen nimi: Advances in Optimization and Applications: 11th International Conference, OPTIMA 2020, Moscow, Russia, September 28 – October 2, 2020, Revised Selected Papers
Sarjan nimi: Communications in Computer and Information Science
Vuosikerta: 1340
Aloitussivu: 158
Lopetussivu: 169
Sivujen määrä: 13
ISBN: 978-3-030-65738-3
eISBN: 978-3-030-65739-0
ISSN: 1865-0929
DOI: https://doi.org/10.1007/978-3-030-65739-0_12
The parametric concept of equilibrium in a finite cooperative game of several players in a normal form is introduced. This concept is defined by the partitioning of the players into coalitions. In this situation, two extreme cases of this parеitioning correspond to the Pareto optimal outcome and the Nash equilibrium outcome, respectively. The parameter space of admissible perturbations in such a problem is formed by a set of additive matrices, with two arbitrary H¨older norms specified independently in the outcome and criterion spaces. The analysis of quasistability for a generalized optimal outcome under the perturbations of the linear payoff function coefficients is performed. The limiting level of such perturbations is found.