A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

Finite Games with Perturbed Payoffs




TekijätEmelichev Vladimir, Nikulin Yury

ToimittajaNicholas Olenev, Yuri Evtushenko, Michael Khachay, Vlasta Malkova

Konferenssin vakiintunut nimiInternational Conference on Optimization and Applications

Julkaisuvuosi2020

JournalCommunications in Computer and Information Science

Kokoomateoksen nimiAdvances in Optimization and Applications: 11th International Conference, OPTIMA 2020, Moscow, Russia, September 28 – October 2, 2020, Revised Selected Papers

Sarjan nimiCommunications in Computer and Information Science

Vuosikerta1340

Aloitussivu158

Lopetussivu169

Sivujen määrä13

ISBN978-3-030-65738-3

eISBN978-3-030-65739-0

ISSN1865-0929

DOIhttps://doi.org/10.1007/978-3-030-65739-0_12


Tiivistelmä

The parametric concept of equilibrium in a finite cooperative game of several players in a normal form is introduced. This concept is defined by the partitioning of the players into coalitions. In this situation, two extreme cases of this parеitioning correspond to the Pareto optimal outcome and the Nash equilibrium outcome, respectively. The parameter space of admissible perturbations in such a problem is formed by a set of additive matrices, with two arbitrary H¨older norms specified independently in the outcome and criterion spaces. The analysis of quasistability for a generalized optimal outcome under the perturbations of the linear payoff function coefficients is performed. The limiting level of such perturbations is found.



Last updated on 2024-26-11 at 20:08