A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

An explicit Pólya-Vinogradov inequality via Partial Gaussian sums




TekijätMatteo Bordignon, Bryce Kerr

KustantajaAMER MATHEMATICAL SOC

Julkaisuvuosi2020

JournalTransactions of the American Mathematical Society

Tietokannassa oleva lehden nimiTRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY

Lehden akronyymiT AM MATH SOC

Vuosikerta373

Numero9

Aloitussivu6503

Lopetussivu6527

Sivujen määrä25

ISSN0002-9947

eISSN1088-6850

DOIhttps://doi.org/10.1090/tran/8138


Tiivistelmä
In this paper we obtain a new fully explicit constant for the Polya-Vinogradov inequality for squarefree modulus. Given a primitive character chi to squarefree modulus q, we prove the following upper bound:vertical bar Sigma(1 <= n <= N) chi(n)vertical bar <= c root q log q,where c = 1/(2 pi(2)) + o(1) for even characters and c = 1/(4 pi) + o(1) for odd characters, with an explicit o(1) term. This improves a result of Frolenkov and Soundararajan for large q. We proceed via partial Gaussian sums rather than the usual Montgomery and Vaughan approach of exponential sums with multiplicative coefficients. This allows a power saving on the minor arcs rather than a factor of log q as in previous approaches and is an important factor for fully explicit bounds.



Last updated on 2024-26-11 at 21:55