A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

High-performance long NoC link using delay-insensitive current-mode signaling




TekijätEthiopia Nigussie, Teijo Lehtonen, Sampo Tuuna, Juha Plosila, Jouni Isoaho

KustantajaHindawi Publishing Corporation

Julkaisuvuosi2007

Artikkelin numero46514

Vuosikerta2007

DOIhttps://doi.org/10.1155/2007/46514


Tiivistelmä

High-performance long-range NoC link enables efficient implementation of network-on-chip topologies which inherently require high-performance long-distance point-to-point communication such as torus and fat-tree structures. In addition, the performance of other topologies, such as mesh, can be improved by using high-performance link between few selected remote nodes.We presented novel implementation of high-performance long-range NoC link based onmultilevel current-mode signaling and delayinsensitive two-phase 1-of-4 encoding. Current-mode signaling reduces the communication latency of long wires significantly
compared to voltage-mode signaling, making it possible to achieve high throughput without pipelining and/or using repeaters. The performance of the proposed multilevel current-mode interconnect is analyzed and compared with two reference voltage mode interconnects. These two reference interconnects are designed using two-phase 1-of-4 encoded voltage-mode signaling, one with pipeline stages and the other using optimal repeater insertion. The proposed multilevel current-mode interconnect achieves higher throughput and lower latency than the two reference interconnects. Its throughput at 8mm wire length is 1.222GWord/s
which is 1.58 and 1.89 times higher than the pipelined and optimal repeater insertion interconnects, respectively. Furthermore, its power consumption is less than the optimal repeater insertion voltage-mode interconnect, at 10mm wire length its power consumption is 0.75mW while the reference repeater insertion interconnect is 1.066 mW. The effect of crosstalk is analyzed using four-bit parallel data transfer with the best-case and worst-case switching patterns and a transmission line model which has both capacitive coupling and inductive coupling.


Ladattava julkaisu

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.





Last updated on 2024-26-11 at 15:44