A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä

A compactness property of the k-abelian monoids




TekijätJuhani Karhumäki, Markus A. Whiteland

KustantajaELSEVIER

Julkaisuvuosi2020

JournalTheoretical Computer Science

Tietokannassa oleva lehden nimiTHEORETICAL COMPUTER SCIENCE

Lehden akronyymiTHEOR COMPUT SCI

Vuosikerta834

Aloitussivu3

Lopetussivu13

Sivujen määrä11

ISSN0304-3975

eISSN1879-2294

DOIhttps://doi.org/10.1016/j.tcs.2020.01.023


Tiivistelmä
The k-abelian equivalence of words, counting the numbers of occurrences of factors of length at most k, has been analyzed in recent years from several different directions. We continue this analysis. The k-abelian equivalence classes are known to constitute a monoid. Hence, equations over these monoids are well defined. We show that these monoids satisfy a compactness property: each system of equations with a finite number of unknowns is equivalent to some of its finite subsystems.We give two proofs for this compactness result. One is based the fact that the monoid can be embedded into the (multiplicative) monoid of matrices, and the other directly on linear algebra. The former method allows the application of Hilbert's basis theorem. The latter one, in turn, allows to conclude an upper bound for the size of the finite subsystem.



Last updated on 2024-26-11 at 23:23