Refereed journal article or data article (A1)

PSB33 protein sustains Photosystem II in plant chloroplasts under UVA light




List of Authors: Nilsson Anders K, Pěnčík Ales, Johansson Oskar N, Bånkestad Daniel, Fristedt Rikard, Suorsa Marjaana, Trotta Andrea, Novák Ondrej, Mamedov Fikret, Aro Eva-Mari, Burmeister Björn Lundin

Publisher: Oxford University Press

Publication year: 2020

Journal: Journal of Experimental Botany

Journal name in source: Journal of experimental botany

Journal acronym: J Exp Bot

Volume number: 71

Issue number: 22

Number of pages: 14

ISSN: 0022-0957

eISSN: 1460-2431

DOI: http://dx.doi.org/10.1093/jxb/eraa427

Self-archived copy’s web address: https://research.utu.fi/converis/portal/detail/Publication/50301711


Abstract
Plants can quickly and dynamically respond to spectral and intensity variations of the incident light. These responses include activation of developmental processes, morphological changes, and photosynthetic acclimation that ensure optimal energy conversion and minimal photoinhibition. Plant adaptation and acclimation to environmental changes have been extensively studied, but many details surrounding these processes remain elusive. The Photosystem II (PSII) associated protein PSB33 plays a fundamental role in sustaining PSII as well as in the regulation of the light antenna in fluctuating lights. We investigated how PSB33 knock-out plants perform under different light qualities. psb33 plants displayed 88% lower fresh weight compared to wild type plants when cultivated in the border of UVA-blue light. The sensitivity towards UVA light was associated with a lower abundance of PSII proteins, which reduces psb33 plants´ capacity for photosynthesis. The UVA phenotype was further found to be linked to altered phytohormone status and changed thylakoid ultrastructure. Our results collectively show that PSB33 is involved in a UVA light-mediated mechanism to maintain a functional PSII pool in the chloroplast.

Downloadable publication

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail. Please cite the original version.




Last updated on 2022-07-04 at 18:09