A4 Vertaisarvioitu artikkeli konferenssijulkaisussa

Automatic Quantification of CT Images for Traumatic Brain Injury




TekijätKoikkalainen J, Lotjonen J, Ledig C, Rueckert D, Tenovuo O, Menon D

ToimittajaIEEE

Konferenssin vakiintunut nimiInternational Symposium on Biomedical Imaging

Julkaisuvuosi2014

JournalInternational Symposium on Biomedical Imaging

Kokoomateoksen nimi2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)

Tietokannassa oleva lehden nimi2014 IEEE 11TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI)

Lehden akronyymiI S BIOMED IMAGING

Sarjan nimiIEEE International Symposium on Biomedical Imaging

Aloitussivu125

Lopetussivu128

Sivujen määrä4

eISBN978-1-4673-1961-4

ISSN1945-7928

DOIhttps://doi.org/10.1109/ISBI.2014.6867825


Tiivistelmä
Traumatic brain injury (TBI) is a major health problem and the most common cause of permanent disability in people under the age of 40 years. In this paper, we present a fully automatic framework for the analysis of acute computed tomography (CT) images in TBI. Different pathologies common in TBI are quantified and all the information is combined for clinical outcome prediction in individual patients. We propose a multi-template approach for the registration of CT data, which improves the robustness and accuracy of spatial normalization. This is especially important for noisy CT data and TBI images with large areas of pathology. The tissue segmentation methods we use have been optimized to deal with these challenges. The methods we describe have been evaluated on acute CTs from 104 TBI patients. We demonstrate on this dataset that the prediction of dichotomized favorable or unfavorable outcome can be made with an accuracy of 79%.



Last updated on 2024-26-11 at 12:15