A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä
Comparison of MRI and positron emission tomography for measuring myocardial perfusion reserve in healthy humans
Tekijät: Parkka JP, Niemi P, Saraste A, Koskenvuo JW, Komu M, Oikonen V, Toikka JO, Kiviniemi TO, Knuuti J, Sakuma H, Hartiala JJ
Kustantaja: WILEY
Julkaisuvuosi: 2006
Journal: Magnetic Resonance in Medicine
Tietokannassa oleva lehden nimi: MAGNETIC RESONANCE IN MEDICINE
Lehden akronyymi: MAGN RESON MED
Vuosikerta: 55
Numero: 4
Aloitussivu: 772
Lopetussivu: 779
Sivujen määrä: 8
ISSN: 0740-3194
DOI: https://doi.org/10.1002/mrm.20833
Tiivistelmä
Myocardial perfusion reserve (MPR, defined as the ratio of the maximum myocardial blood flow (MBF) to the baseline) is an indicator of coronary artery disease and myocardial microvascular abnormalities. First-pass contrast-enhanced magnetic resonance imaging (CE-MRI) using gadolinium (Gd)-DTPA as a contrast agent (CA) has been used to assess MPR. Tracer kinetic models based on compartmental analysis of the CA uptake have been developed to provide quantitative measures of MBF by MRI. To study the accuracy of Gd-DTPA first-pass MRI and kinetic modeling for quantitative analysis of myocardial perfusion and MPR during dipyridamole infusion, we conducted a comparison with positron emission tomography (PET) in 18 healthy males (age = 40 14 years). Five planes were acquired at every second heartbeat with a 1.5T scanner using a saturation recovery turboFLASH sequence. A perfusion-related parameter, the unidirectional influx constant (K-i), was computed in three coronary artery territories. There was a significant correlation for both dipyridamole-induced flow (0.70, P = 0.001) and MPR (0.48, P = 0.04) between MRI and PET. However, we noticed that MRI provided lower MPR values compared to PET (2.5 +/- 1.0 vs. 4.3 +/- 1.8). We conclude that MRI supplemented with tracer kinetic modeling can be used to quantify myocardial perfusion.
Myocardial perfusion reserve (MPR, defined as the ratio of the maximum myocardial blood flow (MBF) to the baseline) is an indicator of coronary artery disease and myocardial microvascular abnormalities. First-pass contrast-enhanced magnetic resonance imaging (CE-MRI) using gadolinium (Gd)-DTPA as a contrast agent (CA) has been used to assess MPR. Tracer kinetic models based on compartmental analysis of the CA uptake have been developed to provide quantitative measures of MBF by MRI. To study the accuracy of Gd-DTPA first-pass MRI and kinetic modeling for quantitative analysis of myocardial perfusion and MPR during dipyridamole infusion, we conducted a comparison with positron emission tomography (PET) in 18 healthy males (age = 40 14 years). Five planes were acquired at every second heartbeat with a 1.5T scanner using a saturation recovery turboFLASH sequence. A perfusion-related parameter, the unidirectional influx constant (K-i), was computed in three coronary artery territories. There was a significant correlation for both dipyridamole-induced flow (0.70, P = 0.001) and MPR (0.48, P = 0.04) between MRI and PET. However, we noticed that MRI provided lower MPR values compared to PET (2.5 +/- 1.0 vs. 4.3 +/- 1.8). We conclude that MRI supplemented with tracer kinetic modeling can be used to quantify myocardial perfusion.