A1 Vertaisarvioitu alkuperäisartikkeli tieteellisessä lehdessä 
Exploring the use of machine learning to automate the qualitative coding of church-related tweets
Tekijät: Anthony-Paul Cooper, Emmanuel Awuni Kolog, Erkki Sutinen
Kustantaja: Equinox Publishing Ltd
Julkaisuvuosi: 2020
Lehti:Fieldwork in Religion
Tietokannassa oleva lehden nimiFieldwork in Religion
Vuosikerta: 14
Numero: 2
Aloitussivu: 140
Lopetussivu: 159
Sivujen määrä: 20
ISSN: 1743-0615
DOI: https://doi.org/10.1558/FIRN.40610
This
 article builds on previous research around the exploration of the 
content of church-related tweets. It does so by exploring whether the 
qualitative thematic coding of such tweets can, in part, be automated by
 the use of machine learning. It compares three supervised machine 
learning algorithms to understand how useful each algorithm is at a 
classification task, based on a dataset of human-coded church-related 
tweets. The study finds that one such algorithm, Naïve-Bayes, performs 
better than the other algorithms considered, returning Precision, Recall
 and F-measure values which each exceed an acceptable threshold of 70%. 
This has far-reaching consequences at a time where the high volume of 
social media data, in this case, Twitter data, means that the 
resource-intensity of manual coding approaches can act as a barrier to 
understanding how the online community interacts with, and talks about, 
church. The findings presented in this article offer a way forward for 
scholars of digital theology to better understand the content of online 
church discourse.